1
|
Sonavane M, Almeida JR, Rajan E, Williams HF, Townsend F, Cornish E, Mitchell RD, Patel K, Vaiyapuri S. Intramuscular Bleeding and Formation of Microthrombi during Skeletal Muscle Damage Caused by a Snake Venom Metalloprotease and a Cardiotoxin. Toxins (Basel) 2023; 15:530. [PMID: 37755956 PMCID: PMC10536739 DOI: 10.3390/toxins15090530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The interactions between specific snake venom toxins and muscle constituents are the major cause of severe muscle damage that often result in amputations and subsequent socioeconomic ramifications for snakebite victims and/or their families. Therefore, improving our understanding of venom-induced muscle damage and determining the underlying mechanisms of muscle degeneration/regeneration following snakebites is critical to developing better strategies to tackle this issue. Here, we analysed intramuscular bleeding and thrombosis in muscle injuries induced by two different snake venom toxins (CAMP-Crotalus atrox metalloprotease (a PIII metalloprotease from the venom of this snake) and a three-finger toxin (CTX, a cardiotoxin from the venom of Naja pallida)). Classically, these toxins represent diverse scenarios characterised by persistent muscle damage (CAMP) and successful regeneration (CTX) following acute damage, as normally observed in envenomation by most vipers and some elapid snakes of Asian, Australasian, and African origin, respectively. Our immunohistochemical analysis confirmed that both CAMP and CTX induced extensive muscle destruction on day 5, although the effects of CTX were reversed over time. We identified the presence of fibrinogen and P-selectin exposure inside the damaged muscle sections, suggesting signs of bleeding and the formation of platelet aggregates/microthrombi in tissues, respectively. Intriguingly, CAMP causes integrin shedding but does not affect any blood clotting parameters, whereas CTX significantly extends the clotting time and has no impact on integrin shedding. The rates of fibrinogen clearance and reduction in microthrombi were greater in CTX-treated muscle compared to CAMP-treated muscle. Together, these findings reveal novel aspects of venom-induced muscle damage and highlight the relevance of haemostatic events such as bleeding and thrombosis for muscle regeneration and provide useful mechanistic insights for developing better therapeutic interventions.
Collapse
Affiliation(s)
- Medha Sonavane
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - Elanchezhian Rajan
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| | - Harry F. Williams
- Toxiven Biotech Private Limited, Coimbatore 641042, Tamil Nadu, India;
| | - Felix Townsend
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | - Elizabeth Cornish
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (F.T.); (E.C.); (K.P.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (E.R.)
| |
Collapse
|
2
|
Marinho AD, Coelho Jorge AR, Nogueira Junior FA, Alison de Moraes Silveira J, Rocha DG, Negreiros Nunes Alves AP, Ferreira RS, Bezerra Jorge RJ, Azul Monteiro HS. Effects of cilostazol, a Phosphodiesterase-3 inhibitor, on kidney function and redox imbalance in acute kidney injury caused by Bothrops alternatus venom. Toxicon 2022; 220:106922. [PMID: 36167141 DOI: 10.1016/j.toxicon.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The mechanisms of pathogenesis of acute kidney injury (AKI) in snakebites is multifactorial and involves hemodynamic disturbances, with release of free radical causing cytotoxic effects. The phosphodiesterase-3 (PDE3) inhibitor, Cilostazol, has been reported to provide protection against renal oxidative stress. OBJECTIVE We evaluated the protective effects of cilostazol against Bothrops alternatus snake venom (BaV)-induced nephrotoxicity. METHODS Wistar rat kidneys (n = 6, 260-300 g) were isolated and perfused with Krebs-Henseleit solution containing 6 g/100 mL of bovine serum albumin. After 30 min, the kidneys were perfused with BaV to a final concentration of 1 and 3 μg/mL, and subsequently evaluated for perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and percentage of electrolyte tubular sodium and chloride transport (%TNa+, %TCl-). Oxidative stress and renal histological analyses were performed. RESULTS BaV caused a reduction in all the evaluated renal parameters (PP, RVR, GFR, UF, %TNa+, and %TCl-). Although only the effects on PP and UF were reversed with cilostazol treatment, the decrease in the malondialdehyde levels, without changes in glutathione levels, further reduced the venom-induced renal tissue changes. CONCLUSION Our data suggest that PDE3 is involved in BaV-induced nephrotoxicity, as cilostazol administration significantly ameliorated these effects.
Collapse
Affiliation(s)
- Aline Diogo Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| | - Antônio Rafael Coelho Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Francisco Assis Nogueira Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - João Alison de Moraes Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Danilo Galvão Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil; Department of Dental Clinic, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Monsenhor Furtado St., 60.430-350, Fortaleza, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals, Fazenda Experimental Lageado, São Paulo State University, José Barbosa de Barros St., 1780, 18610-307, Botucatu, SP, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Helena Serra Azul Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Production of a murine mAb against Bothrops alternatus and B. neuwiedi snake venoms and its use to isolate a thrombin-like serine protease fraction. Int J Biol Macromol 2022; 214:530-541. [PMID: 35753516 DOI: 10.1016/j.ijbiomac.2022.06.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
Accidents with snakes from the genus Bothrops represent ~90 % of all snakebites in Brazil. Monoclonal antibodies (mAbs) targeting venom components can be important assets for treating envenoming syndromes, for developing diagnostic tests and for research purposes. Therefore, in this study, we aimed to generate murine mAbs against the antigenic mixture of Bothropic venoms traditionally used as immunogen to produce Bothropic antivenoms in Brazil. ELISA showed that one of the produced mAbs recognizes B. alternatus and B. neuwiedi venoms (mAb anti-Ba/Bn) specifically and Western Blot revealed that this mAb binds to a single protein band of molecular mass of ≈50 kDa. MAb anti-Ba/Bn inhibited the coagulant activity but was unable to neutralize hemorrhagic and phospholipase A2 activities caused by the B. neuwiedi venom. MAb anti-Ba/Bn was immobilized to Sepharose beads and used for immunoaffinity chromatography of B. neuwiedi venom. Proteolytic activity assays indicated that the immunoaffinity-purified fraction (BnF-Bothrops neuwiedi fraction) has a serine protease thrombin-like profile, which was supported by coagulability assays in mice. Bottom-up proteomic analysis confirmed the prevalence of serine proteases in BnF using label-free quantification. In conclusion, this work characterized a mAb with neutralizing properties against B. neuwiedi coagulant activity and demonstrates that immunoaffinity chromatography using mAbs can be a useful technique for purification of bioactive toxic proteins from Bothrops spp. snake venoms.
Collapse
|
4
|
Traces of Bothrops snake venoms in necrotic muscle preclude myotube formation in vitro. Toxicon 2022; 211:36-43. [DOI: 10.1016/j.toxicon.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
|
5
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
6
|
Biotoxins in muscle regeneration research. J Muscle Res Cell Motil 2019; 40:291-297. [PMID: 31359301 DOI: 10.1007/s10974-019-09548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Skeletal muscles are characterized by their unique regenerative capacity following injury due to the presence of muscle precursor cells, satellite cells. This characteristic allows researchers to study muscle regeneration using experimental injury models. These injury models should be stable and reproducible. Variety of injury models have been used, among which the intramuscular injection of myotoxic biotoxins is considered the most common and widespread method in muscle regeneration research. By using isolated biotoxins, researchers could induce acute muscle damage and regeneration in a controlled and reproducible manner. Therefore, it is considered an easy method for inducing muscle injury in order to understand the different mechanisms involved in muscle injuries and tissue response following injury. However, different toxins and venoms have different compositions and subsequently the possible effects of these toxins on skeletal muscle vary according to their composition. Moreover, regeneration of injured muscle by venoms and toxins varies according to the target of toxin or venom. Therefore, it is essential for researcher to be aware of the mechanism and possible target of toxin-induced injury. The current paper provides an overview of the biotoxins used in skeletal muscle research.
Collapse
|
7
|
Santos W, Silveira T, Fiúza A, Botelho A, Gonçalves I, Ferreira E, Soto-Blanco B, Melo M. Bothrops alternatus snake venom induces apoptosis of skeletal muscle cells in a rabbit model. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- W.G. Santos
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - E. Ferreira
- Universidade Federal de Minas Gerais, Brazil
| | | | - M.M. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
8
|
Xiong S, Luo Y, Zhong L, Xiao H, Pan H, Liao K, Yang M, Huang C. Investigation of the inhibitory potential of phospholipase A 2 inhibitor gamma from Sinonatrix annularis to snake envenomation. Toxicon 2017; 137:83-91. [PMID: 28746861 DOI: 10.1016/j.toxicon.2017.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
SaPLIγ is a novel gamma phospholipase A2 inhibitor (PLI) recently isolated from Sinonatrix annularis, a Chinese endemic non-venomous snake. To explore the neutralization effects of saPLIγ in snakebite envenomation, a dose equivalent to LD50 of Deinagkistrodon acutus, Agkistrodon halys and Naja atra venom with/without saPLIγ was inoculated into the gastrocnemius muscle of female Kunming mice. The ability of saPLIγ to inhibit myonecrosis and systemic toxicity were evaluated through investigations of muscle histopathology, and determination of the serum levels of creatine kinase (CK), lactate dehydrogenase isoenzyme1 (LDH1) and aspartate transferase (AST). Edema of the gastrocnemius muscle was evaluated by calculating the width difference between the inoculated limb and the contralateral leg. Desmin loss in the gastrocnemius muscle was determined by Western blot analysis. Co-immunoprecipitation and shotgun LC-MS/MS analyses were performed to identify venom proteins that interact with saPLIγ. All the envenomed mice had significantly elevated serum CK, LDH1 and AST levels, whereas the levels were decreased significantly in the presence of saPLIγ. Histopathological evaluation of gastrocnemius muscle sections showed severe snake venom-induced damage, characterized by leukocyte infiltration and erythrocyte leakage, leading to local edema. Myonecrosis, hemorrhage and desmin loss were significantly attenuated by saPLIγ. SaPLIγ interacted with a wide range of venom proteins, including PLA2s, metalloproteinases and C type lectins, which may contribute to broad anti-venom effects.
Collapse
Affiliation(s)
- Shengwei Xiong
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Yunyun Luo
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Lipeng Zhong
- The Fourth Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huixiang Xiao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Hong Pan
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Keren Liao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Mengxue Yang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China; Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|