1
|
Zhao S, Mo LX, Li WT, Jiang LL, Meng YY, Ou JF, Liao LS, Yan YS, Luo XM, Feng JX. Arginine methyltransferases PRMT2 and PRMT3 are essential for biosynthesis of plant-polysaccharide-degrading enzymes in Penicillium oxalicum. PLoS Genet 2023; 19:e1010867. [PMID: 37523410 PMCID: PMC10414604 DOI: 10.1371/journal.pgen.1010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Li-Xiang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lian-Li Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yi-Yuan Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jian-Feng Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Wang J, Liang L, Wei S, Zhang S, Hu Y, Lv Y. Histone 2-Hydroxyisobutyryltransferase Encoded by Afngg1 Is Involved in Pathogenicity and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel) 2022; 15:7. [PMID: 36668827 PMCID: PMC9861817 DOI: 10.3390/toxins15010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin, a carcinogenic secondary metabolite produced by Aspergillus flavus, is a significant threat to human health and agricultural production. Histone 2-hydroxyisobutyrylation is a novel post-translational modification that regulates various biological processes, including secondary metabolism. In this study, we identified the novel histone 2-hydroxyisobutyryltransferase Afngg1 in A. flavus, and explored its role in cell growth, development and aflatoxin biosynthesis. Afngg1 gene deletion markedly decreased lysine 2-hydroxyisobutyrylation modification of histones H4K5 and H4K8 compared with the control strain. Additionally, Afngg1 deletion inhibited mycelial growth of A. flavus, and the number of conidia and hydrophobicity were significantly decreased. Notably, aflatoxin B1 biosynthesis and sclerotia production were completely inhibited in the ΔAfngg1 strain. Furthermore, the pathogenicity of the ΔAfngg1 strain infecting peanut and corn grains was also diminished, including reduced spore production and aflatoxin biosynthesis compared with A. flavus control and Afngg1 complementation strains. Transcriptome analysis showed that, compared with control strains, differentially expressed genes in ΔAfngg1 were mainly involved in chromatin remodelling, cell development, secondary metabolism and oxidative stress. These results suggest that Afngg1 is involved in histone 2-hydroxyisobutyrylation and chromatin modification, and thus affects cell development and aflatoxin biosynthesis in A. flavus. Our results lay a foundation for in-depth research on the 2-hydroxyisobutyrylation modification in A. flavus, and may provide a novel target for aflatoxin contamination prevention.
Collapse
Affiliation(s)
- Jing Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Liuke Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhuang Z, Pan X, Zhang M, Liu Y, Huang C, Li Y, Hao L, Wang S. Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus Aspergillus flavus. Virulence 2022; 13:1358-1378. [PMID: 35943142 PMCID: PMC9364737 DOI: 10.1080/21505594.2022.2101218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus flavus infects various crops with aflatoxins, and leads to aspergillosis opportunistically. Though H3K36 methylation plays an important role in fungal toxin metabolism and virulence, no data about the biological function of H3K36 methylation in A. flavus virulence has been reported. Our study showed that the Set2 histone methyltransferase family, AshA and SetB, involves in morphogenesis and mycotoxin anabolism by regulating related transcriptional factors, and they are important for fungal virulence to crops and animals. Western-blotting and double deletion analysis revealed that AshA mainly regulates H3K36me2, whereas SetB is mainly responsible for H3K36me3 in the nucleus. By construction of domain deletion A. flavus strain and point mutation strains by homologous recombination, the study revealed that SET domain is indispensable in mycotoxin anabolism and virulence of A. flavus, and N455 and V457 in it are the key amino acid residues. ChIP analysis inferred that the methyltransferase family controls fungal reproduction and regulates the production of AFB1 by directly regulating the production of the transcriptional factor genes, including wetA, steA, aflR and amylase, through H3K36 trimethylation in their chromatin fragments, based on which this study proposed that, by H3K36 trimethylation, this methyltransferase family controls AFB1 anabolism through transcriptional level and substrate utilization level. This study illuminates the epigenetic mechanism of the Set2 family in regulating fungal virulence and mycotoxin production, and provides new targets for controlling the virulence of the fungus A. flavus.
AUTHOR SUMMARY
The methylation of H3K36 plays an important role in the fungal secondary metabolism and virulence, but no data about the regulatory mechanism of H3K36 methylation in the virulence of A. flavus have been reported. Our study revealed that, in the histone methyltransferase Set2 family, AshA mainly catalyzes H3K36me2, and involves in the methylation of H3K36me1, and SetB mainly catalyzes H3K36me3 and H3K36me1. Through domain deletion and point mutation analysis, this study also revealed that the SET domain was critical for the normal biological function of the Set2 family and that N455 and V457 in the domain were critical for AshA. By ChIP-seq and ChIP-qPCR analysis, H3K36 was found to be trimethylation modified in the promotors and ORF positions of wetA, steA, aflR and the amylase gene (AFLA_084340), and further qRT-PCR results showed that these methylation modifications regulate the expression levels of these genes. According to the results of ChIP-seq analysis, we proposed that, by H3K36 trimethylation, this methyltransferase family controls the metabolism of mycotoxin through transcriptional level and substrate utilization level. All the results from this study showed that Set2 family is essential for fungal secondary metabolism and virulence, which lays a theoretical groundwork in the early prevention and treatment of A. flavus pollution, and also provides an effective strategy to fight against other pathogenic fungi.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaju Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuanzhong Huang
- Immuno-Oncology Laboratory of Fujian Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li Y, Song Z, Wang E, Dong L, Bai J, Wang D, Zhu J, Zhang C. Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Front Microbiol 2022; 13:980615. [PMID: 36016791 PMCID: PMC9395700 DOI: 10.3389/fmicb.2022.980615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a primary cause of death in patients with hematological malignancies and transplant recipients, invasive aspergillosis (IA) is a condition that warrants attention. IA infections have been increasing, which remains a significant cause of morbidity and mortality in immunocompromised patients. During the past decade, antifungal drug resistance has emerged, which is especially concerning for management given the limited options for treating azole-resistant infections and the possibility of failure of prophylaxis in those high-risk patients. Histone posttranslational modifications (HPTMs), mainly including acetylation, methylation, ubiquitination and phosphorylation, are crucial epigenetic mechanisms regulating various biological events, which could modify the conformation of histone and influence chromatin-associated nuclear processes to regulate development, cellular responsiveness, and biological phenotype without affecting the underlying genetic sequence. In recent years, fungi have become important model organisms for studying epigenetic regulation. HPTMs involves in growth and development, secondary metabolite biosynthesis and virulence in Aspergillus. This review mainly aims at summarizing the acetylation, deacetylation, methylation, demethylation, and sumoylation of histones in IA and connect this knowledge to possible HPTMs-based antifungal drugs. We hope this research could provide a reference for exploring new drug targets and developing low-toxic and high-efficiency antifungal strategies.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ente Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinyan Zhu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
5
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
6
|
Arginine Methyltransferase PeRmtC Regulates Development and Pathogenicity of Penicilliumexpansum via Mediating Key Genes in Conidiation and Secondary Metabolism. J Fungi (Basel) 2021; 7:jof7100807. [PMID: 34682229 PMCID: PMC8537047 DOI: 10.3390/jof7100807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Penicillium expansum is one of the most common and destructive post-harvest fungal pathogens that can cause blue mold rot and produce mycotoxins in fruit, leading to significant post-harvest loss and food safety concerns. Arginine methylation by protein arginine methyltransferases (PRMTs) modulates various cellular processes in many eukaryotes. However, the functions of PRMTs are largely unknown in post-harvest fungal pathogens. To explore their roles in P. expansum, we identified four PRMTs (PeRmtA, PeRmtB, PeRmtC, and PeRmt2). The single deletion of PeRmtA, PeRmtB, or PeRmt2 had minor or no impact on the P. expansum phenotype while deletion of PeRmtC resulted in decreased conidiation, delayed conidial germination, impaired pathogenicity and pigment biosynthesis, and altered tolerance to environmental stresses. Further research showed that PeRmtC could regulate two core regulatory genes, PeBrlA and PeAbaA, in conidiation, a series of backbone genes in secondary metabolism, and affect the symmetric ω-NG, N’G-dimethylarginine (sDMA) modification of proteins with molecular weights of primarily 16–17 kDa. Collectively, this work functionally characterized four PRMTs in P. expansum and showed the important roles of PeRmtC in the development, pathogenicity, and secondary metabolism of P. expansum.
Collapse
|
7
|
Updates on the Functions and Molecular Mechanisms of the Genes Involved in Aspergillus flavus Development and Biosynthesis of Aflatoxins. J Fungi (Basel) 2021; 7:jof7080666. [PMID: 34436205 PMCID: PMC8401812 DOI: 10.3390/jof7080666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus (A. flavus) is a ubiquitous and opportunistic fungal pathogen that causes invasive and non-invasive aspergillosis in humans and animals. This fungus is also capable of infecting a large number of agriculture crops (e.g., peanuts, maze, cotton seeds, rice, etc.), causing economic losses and posing serious food-safety concerns when these crops are contaminated with aflatoxins, the most potent naturally occurring carcinogens. In particular, A. flavus and aflatoxins are intensely studied, and they continue to receive considerable attention due to their detrimental effects on humans, animals, and crops. Although several studies have been published focusing on the biosynthesis of the aforementioned secondary metabolites, some of the molecular mechanisms (e.g., posttranslational modifications, transcription factors, transcriptome, proteomics, metabolomics and transcriptome, etc.) involved in the fungal development and aflatoxin biosynthesis in A. flavus are still not fully understood. In this study, a review of the recently published studies on the function of the genes and the molecular mechanisms involved in development of A. flavus and the production of its secondary metabolites is presented. It is hoped that the information provided in this review will help readers to develop effective strategies to reduce A. flavus infection and aflatoxin production.
Collapse
|
8
|
Medina-Gómez C, Bolaños J, Borbolla-Vázquez J, Munguía-Robledo S, Orozco E, Rodríguez MA. The atypical protein arginine methyltrasferase of Entamoeba histolytica (EhPRMTA) is involved in cell proliferation, heat shock response and in vitro virulence. Exp Parasitol 2021; 222:108077. [PMID: 33465379 DOI: 10.1016/j.exppara.2021.108077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8). The protozoa parasite Entamoeba histolytica has four PRMTs related to type I; three of them are similar to PRMT1, but the other one does not show significant homology to be grouped in any known PRMT family, thus we called it as atypical PRMT (EhPRMTA). Here, we showed that EhPRMTA does not contain several of the canonical amino acid residues of type I PRMTs, confirming that it is an atypical PRMT. A specific antibody against EhPRMTA localized this protein in cytoplasm. The recombinant EhPRMTA displayed catalytic activity on commercial histones and the native enzyme modified its expression level during heat shock and erythrophagocytosis. Besides, the knockdown of EhPRMTA produced an increment in cell growth, and phagocytosis, but decreases cell migration and the survival of trophozoites submitted to heat shock, suggesting that this protein is involved in regulate negatively or positively these events, respectively. Thus, results suggest that this methyltransferase regulates some cellular functions related to virulence and cell surviving.
Collapse
Affiliation(s)
- Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | - Susana Munguía-Robledo
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Bisceglie F, Degola F, Rogolino D, Giannelli G, Orsoni N, Spadola G, Pioli M, Restivo FM, Carcelli M, Pelosi G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially tune Aspergillus flavus secondary metabolism. Sci Rep 2020; 10:17686. [PMID: 33077881 PMCID: PMC7572373 DOI: 10.1038/s41598-020-74574-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.
Collapse
Affiliation(s)
- Franco Bisceglie
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesca Degola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Dominga Rogolino
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Gianluigi Giannelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nicolò Orsoni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Spadola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marianna Pioli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco M. Restivo
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mauro Carcelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
10
|
The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms 2020; 8:microorganisms8020227. [PMID: 32046339 PMCID: PMC7074731 DOI: 10.3390/microorganisms8020227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.
Collapse
|
11
|
rmtA-Dependent Transcriptome and Its Role in Secondary Metabolism, Environmental Stress, and Virulence in Aspergillus flavus. G3-GENES GENOMES GENETICS 2019; 9:4087-4096. [PMID: 31601618 PMCID: PMC6893206 DOI: 10.1534/g3.119.400777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aspergillus flavus colonizes numerous oil seed crops such as maize, peanuts, treenuts and cottonseed worldwide, contaminating them with aflatoxins and other harmful toxins. Previously our lab characterized the gene rmtA, which encodes an arginine methyltransferase in A. flavus, and demonstrated its role governing the expression of regulators in the aflatoxin gene cluster and subsequent synthesis of toxin. Furthermore, our studies revealed that rmtA also controls conidial and sclerotial development implicating it as an epigenetic regulator in A. flavus. To confirm this, we performed a RNA sequencing analysis to ascertain the extent of rmtA’s influence on the transcriptome of A. flavus. In this analysis we identified over 2000 genes that were rmtA-dependent, including over 200 transcription factor genes, as well as an uncharacterized secondary metabolite gene cluster possibly responsible for the synthesis of an epidithiodiketopiperazine-like compound. Our results also revealed rmtA-dependent genes involved in multiple types of abiotic stress response in A. flavus. Importantly, hundreds of genes active during maize infection were also regulated by rmtA. In addition, in the animal infection model, rmtA was dispensable for virulence, however forced overexpression of rmtA increased mortality with respect to the wild type.
Collapse
|
12
|
Tumukunde E, Li D, Qin L, Li Y, Shen J, Wang S, Yuan J. Osmotic-Adaptation Response of sakA/hogA Gene to Aflatoxin Biosynthesis, Morphology Development and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11010041. [PMID: 30646608 PMCID: PMC6356625 DOI: 10.3390/toxins11010041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral part of the mitogen activated protein kinase signal of the high osmolarity glycerol pathway. In this study, the AfsakA gene was deleted (∆AfsakA) then complemented (∆AfsakA::AfsakA) using homologous recombination and the osmotic stress was induced by 1.2 mol/L D-sorbital and 1.2 mol/L sodium chloride. The result showed that ∆AfsakA mutant caused a significant influence on conidial formation compared to wild-type and ∆AfsakA::AfsakA strains. It was also found that AfsakA responds to both the osmotic stress and the cell wall stress. In the absence of osmotic stress, ∆AfsakA mutant produced more sclerotia in contrast to other strains, whereas all strains failed to generate sclerotia under osmotic stress. Furthermore, the deletion of AfsakA resulted in the increase of Aflatoxin B1 production compared to other strains. The virulence assay on both maize kernel and peanut seeds showed that ∆AfsakA strain drastically produced more conidia and Aflatoxin B1 than wild-type and complementary strains. AfSakA-mCherry was located to the cytoplasm in the absence of osmotic stress, while it translocated to the nucleus upon exposure to the osmotic stimuli. This study provides new insights on the development and evaluation of aflatoxin biosynthesis and also provides better understanding on how to prevent Aspergillus infections which would be considered the first step towards the prevention of the seeds damages caused by A. flavus.
Collapse
Affiliation(s)
- Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ling Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiaojiao Shen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Ministry of Education and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Lv Y, Lv A, Zhai H, Zhang S, Li L, Cai J, Hu Y. Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. Int J Food Microbiol 2018; 284:11-21. [DOI: 10.1016/j.ijfoodmicro.2018.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
14
|
Bai W, Feng T, Lan F, Lin G, Li Y, Fasoyin OE, Liu Y, Jia K. Study on the bio-function of lipA gene in Aspergillus flavus. Genes Genomics 2018; 41:107-111. [PMID: 30264213 DOI: 10.1007/s13258-018-0744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Lipoic acid synthase (LipA) plays a role in lipoic acid synthesis and potentially affects the levels of acetyl-CoA, the critical precursor of tricarboxylic acid (TCA) cycle. Considering the potential effect of LipA on TCA cycle, whether the enzyme is involved in the growth and aflatoxin B1 (AFB1) biosynthesis, the significant events in Aspergillus flavus is yet known. The study was designed to explore the role of lipA gene in A. flavus, including growth rate, conidiation, sclerotia formation, and biosynthesis of AFB1. LipA coding lipoic acid synthetase was knocked out using homologous recombination. The role of lipA gene in A. flavus morphogenesis (including colony size, conidiation, and sclerotia formation) was explored on various media, and the bio-function of lipA gene in the biosynthesis of AFB1 was analyzed by thin layer chromatography analysis. The growth was suppressed in △lipA. The formation of conidia and sclerotia was also reduced when lipA gene was deleted. Moreover, AFB1 was down-regulated in ΔlipA compared with WT controls. LipA plays a role in the development of A. flavus and AFB1 biosynthesis, contributing to the full understanding of the lipA bio-function in A. flavus.
Collapse
Affiliation(s)
- Wenzhao Bai
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Tiejun Feng
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faxiu Lan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guanglan Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Opemipo Esther Fasoyin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaju Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunzhi Jia
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Hu Y, Yang G, Zhang D, Liu Y, Li Y, Lin G, Guo Z, Wang S, Zhuang Z. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel) 2018; 10:toxins10070301. [PMID: 30036940 PMCID: PMC6070901 DOI: 10.3390/toxins10070301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
Aspergillus flavus produces mycotoxins especially aflatoxin B1 and infects crops worldwide. As a PHD transcription factor, there is no report on the role of Rum1 in the virulence of Aspergillus spp. yet. This study explored the biological function of Rum1 in A. flavus through the construction of rum1 deletion mutants and rum1 complementation strains with the method of homologous recombination. It was found, in the study, that Rum1 negatively regulates conidiation through abaA and brlA, positively regulates sclerotia formation through nsdC, nsdD, and sclR, triggers aflatoxin biological synthesis, and enhances the activity of amylase. Our findings suggested that Rum1 plays a major role in the growth of mycelia, conidia, and sclerotia production along with aflatoxin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Yule Hu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guang Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Danping Zhang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yaju Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Xiamen Genokon Medical Genokon Company, Xiamen 361115, China.
| | - Guanglan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqiang Guo
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Yuan J, Chen Z, Guo Z, Li D, Zhang F, Shen J, Zhang Y, Wang S, Zhuang Z. PbsB Regulates Morphogenesis, Aflatoxin B1 Biosynthesis, and Pathogenicity of Aspergillus flavus. Front Cell Infect Microbiol 2018; 8:162. [PMID: 29868518 PMCID: PMC5966551 DOI: 10.3389/fcimb.2018.00162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
As an opportunistic pathogen, Aspergillus flavus is one of the major causes of food contamination around the world. In this study, pbsB gene knockout mutant (ΔpbsB) and pbsB overexpression strain (OE) of A. flavus were constructed by homologous recombination. The results showed that the mycelia growth, conidiation, and the formation of sclerotia in ΔpbsB mutant were significantly suppressed, and up-regulated in OE strian compared to wild-type strain (WT). Q-PCR analysis showed that PbsB regulated the sclerotia formation through sclerotia related gene nsdC. With TLC and qRT-PCR analysis, it was found that PbsB up-regulated the bio-synthesis of aflatoxin B1 (AFB1) through regulatory gene aflR and structural gene aflC, aflD, aflK, and aflQ in the aflatoxin gene cluster. In osmotic stress response analysis, ΔpbsB mutant was significantly more sensitive to osmotic pressure with 1.2 mol/L sorbitol, compared to WT and OE strains. In virulence analysis, the infection capacity of ΔpbsB strain to peanut and maize kernels decreased dramatically, and significantly fewer spores and lesser mycelia were produced in ΔpbsB strain on the surface of peanut and maize kernels, and the infection capacity of OE strain to kernels increased significantly compared with WT strain. The AFB1 bio-synthesis ability of A. flavus in crop invasion models was also found to be coincide with the expression level of pbsB. All the results of the study shows that, as a MAPKK, PbsB is critical for growth and virulence in A. flavus, and lay a theoretical foundation for the prevention and control of A. flavus contamination.
Collapse
Affiliation(s)
- Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqiang Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaojiao Shen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Yang G, Hu Y, Fasoyin OE, Yue Y, Chen L, Qiu Y, Wang X, Zhuang Z, Wang S. The Aspergillus flavus Phosphatase CDC14 Regulates Development, Aflatoxin Biosynthesis and Pathogenicity. Front Cell Infect Microbiol 2018; 8:141. [PMID: 29868497 PMCID: PMC5950752 DOI: 10.3389/fcimb.2018.00141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Reversible protein phosphorylation is known to play important roles in the regulation of various cellular processes in eukaryotes. Phosphatase-mediated dephosphorylation are integral components of cellular signal pathways by counteracting the phosphorylation action of kinases. In this study, we characterized the functions of CDC14, a dual-specificity phosphatase in the development, secondary metabolism and crop infection of Aspergillus flavus. Deletion of AflCDC14 resulted in a growth defect and abnormal conidium morphology. Inactivation of AflCDC14 caused defective septum and failure to generate sclerotia. Additionally, the AflCDC14 deletion mutant (ΔCDC14) displayed increased sensitivity to osmotic and cell wall integrity stresses. Importantly, it had a significant increase in aflatoxin production, which was consistent with the up-regulation of the expression levels of aflatoxin biosynthesis related genes in ΔCDC14 mutant. Furthermore, seeds infection assays suggested that AflCDC14 was crucial for virulence of A. flavus. It was also found that the activity of amylase was decreased in ΔCDC14 mutant. AflCDC14-eRFP mainly localized to the cytoplasm and vesicles during coidial germination and mycelial development stages. Taken together, these results not only reveal the importance of the CDC14 phosphatase in the regulation of development, aflatoxin biosynthesis and virulence in A. flavus, but may also provide a potential target for controlling crop infections of this fungal pathogen.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yule Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Opemipo E Fasoyin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijie Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Šimončicová J, Kaliňáková B, Kryštofová S. Aflatoxins: biosynthesis, prevention and eradication. ACTA CHIMICA SLOVACA 2017. [DOI: 10.1515/acs-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Filamentous fungi belonging to Aspergilli genera produce many compounds through various biosynthetic pathways. These compounds include a spectrum of products with beneficial medical properties (lovastatin) as well as those that are toxic and/or carcinogenic which are called mycotoxins. Aspergillus flavus, one of the most abundant soil-borne fungi, is a saprobe that is able growing on many organic nutrient sources, such as peanuts, corn and cotton seed. In many countries, food contamination by A. flavus is a huge problem, mainly due to the production of the most toxic and carcinogenic compounds known as aflatoxins. In this paper, we briefly cover current progress in aflatoxin biosynthesis and regulation, pre- and postharvest preventive measures, and decontamination procedures.
Collapse
Affiliation(s)
- Juliana Šimončicová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava , Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| |
Collapse
|
20
|
Liang L, Liu Y, Yang K, Lin G, Xu Z, Lan H, Wang X, Wang S. The Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9070232. [PMID: 28737735 PMCID: PMC5535179 DOI: 10.3390/toxins9070232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Lysine methyltransferases transfer methyl groups in specific lysine sites, which regulates a variety of important biological processes in eukaryotes. In this study, we characterized a novel homolog of the yeast methyltransferase DOT1 in A. flavus, and observed the roles of dot1 in A. flavus. Deletion of dot1 showed a significant decrease in conidiation, but an increase in sclerotia formation. A change in viability to multiple stresses was also found in the Δdot1 mutant. Additionally, aflatoxin (AF) production was found severely impaired in the Δdot1 mutant. Further analysis by qRT-PCR revealed that the transcription of AF structural genes and their regulator gene aflS were prominently suppressed in the Δdot1 mutant. Furthermore, our data revealed that Dot1 is important for colonizing maize seeds in A. flavus. Our research indicates that Dot1 is involved in fungal development, aflatoxin biosynthesis and fungal virulence in A. flavus, which might provide a potential target for controlling A. flavus with new strategies.
Collapse
Affiliation(s)
- Linlin Liang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinghang Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guinan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhangling Xu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiuna Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|