1
|
Santos LO, Borges JMP, Leite JL, Victor MM, da Silva AL, dos Santos CC, da Silva VDA, do Nascimento RP, Costa SL. The Secretome of Brain Endothelial Cells Exposed to the Pyrrolizidine Alkaloid Monocrotaline Induces Astrocyte Reactivity and Is Neurotoxic. Toxins (Basel) 2025; 17:65. [PMID: 39998082 PMCID: PMC11860515 DOI: 10.3390/toxins17020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Monocrotaline (MCT) has well-characterized hepatotoxic and pneumotoxic effects attributed to its active pyrrole metabolites. Studies have previously shown that astrocytes and neurons are targets of MCT, and that toxicity is attributed to astrocyte P450 metabolism to reactive metabolites. However, little is known about MCT toxicity and metabolism by brain endothelial cells (BECs), cells that, together with astrocytes, are specialized in xenobiotic metabolism and neuroprotection. Therefore, in the present study, we evaluated the toxicity of MCT in BECs, and the effects on astrocyte reactivity and neuronal viability in vitro. MCT was purified from Crotalaria retusa seeds. BECs, obtained from the brain of adult Wistar rats, were treated with MCT (1-500 µM), and cell viability and morphology were analyzed after 24-72 h of treatment. Astrocyte/neuron co-cultures were prepared from the cortex of neonatal and embryonic Wistar rats, and the cultures were exposed to conditioned medium (secretome) derived from BECs previously treated with MCT (100-500 µM, SBECM100/500). MCT was not toxic to BECs at the concentrations used and induced a concentration-dependent increase in cell dehydrogenase after 72 h of treatment, suggesting resistance to damage and drug metabolism. However, exposure of astrocyte/neuron co-cultures to the SBECM for 24 h induced changes in the cell morphology, vacuolization, and overexpression of GFAP in astrocytes, characterizing astrogliosis, and neurotoxicity with a reduction in the length of neurites labeled for β-III-tubulin, effects that were MCT concentration-dependent. These results support the hypothesis that MCT neurotoxicity may be due to products of its metabolism by components of the BBB such as BECs and astrocytes, which may be responsible for the brain lesions and symptoms observed after intoxication.
Collapse
Affiliation(s)
- Letícia Oliveira Santos
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Julita Maria Pereira Borges
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
- Department Health of Science, State University of Southwest of Bahia (UESB), Estrada do Bem Querer Km 04, Vitória da Conquista 45083-900, BA, Brazil
| | - Juliana Lago Leite
- Department of Organic Chemistry Chemistry Institute, Federal University of Bahia, R. Barão de Jeremoabo, 147—Ondina, Salvador 40170-115, BA, Brazil; (J.L.L.); (M.M.V.)
| | - Mauricio Moraes Victor
- Department of Organic Chemistry Chemistry Institute, Federal University of Bahia, R. Barão de Jeremoabo, 147—Ondina, Salvador 40170-115, BA, Brazil; (J.L.L.); (M.M.V.)
| | - Adriana Lopes da Silva
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Health Sciences Institute, Federal University of Bahia, Av. Reitor Miguel Calmon s/n Vale do Canela, Salvador 40231-300, BA, Brazil; (L.O.S.); (J.M.P.B.); (C.C.d.S.); (V.D.A.d.S.)
| |
Collapse
|
2
|
Silva AL, Oliveira JL, do Nascimento RP, Santos LO, de Araújo FM, Dos Santos BL, Santana RC, Moreira ELT, Batatinha MJM, Alves IM, Velozo ES, Victor MM, Assis AM, Almeida RF, de Souza DOG, Silva VDA, Costa SL. Monocrotaline induces acutely cerebrovascular lesions, astrogliosis and neuronal degeneration associated with behavior changes in rats: A model of vascular damage in perspective. Neurotoxicology 2023; 94:59-70. [PMID: 36336098 DOI: 10.1016/j.neuro.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1β and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.
Collapse
Affiliation(s)
- Adriana L Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Joana L Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Ravena P do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Letícia O Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Fillipe M de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Balbino L Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; Federal University of Vale do São Francisco, Brazil
| | - Rejane C Santana
- Laboratory of Neuroscience, Federal University of Bahia, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Eduardo Luiz T Moreira
- School of Veterinary Medicine and Animal Science, Hospital of Veterinary Medicine, Department of Anatomy, Pathology and Veterinary Clinics, Federal University of Bahia, Brazil
| | - Maria José M Batatinha
- Laboratory of Toxicology, School of Veterinary Medicine and Animal Science, Hospital of Veterinary Medicine, Federal University of Bahia, Brazil
| | - Iura M Alves
- Faculty of Pharmacy, Department of Medication, Federal University of Bahia, Brazil
| | - Eudes S Velozo
- Faculty of Pharmacy, Department of Medication, Federal University of Bahia, Brazil
| | - Mauricio M Victor
- Organic Chemistry Department, Chemistry Institute, Federal University of Bahia, Brazil
| | - Adriano M Assis
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; Catholic University of Pelotas, Brazil
| | - Roberto F Almeida
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; Federal University of Ouro Preto, Brazil
| | - Diogo O G de Souza
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil
| | - Victor Diógenes A Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil.
| | - Silvia L Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil.
| |
Collapse
|
3
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
4
|
Crotalaria spectabilis poisoning in horses fed contaminating oats. Toxicon 2021; 197:6-11. [PMID: 33852904 DOI: 10.1016/j.toxicon.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
The present report describes the clinical and pathological changes induced by the consumption of oats contaminated with Crotalaria spectabilis seeds by horses. Eighty horses were exposed to oats containing 10 g/kg of C. spectabilis seeds with 0.46% pyrrolizidine alkaloids, and 21 horses died within a 6-month period. Clinical signs included jaundice, apathy, a hypotonic tongue, ataxia, hyporexia, weight loss, aimless wandering, violent behavior, and proprioceptive deficits. Pathological findings were predominant in the liver and included periportal bridging fibrosis, megalocytosis, centrilobular necrosis, and bile stasis. Other findings were Alzheimer's type II astrocytes in the cortex, midbrain, basal nuclei, brainstem and pons; multifocal edema and hemorrhage in the lungs; and degeneration and necrosis of the tubular epithelium of kidneys. Horses are highly sensitive to pyrrolizidine alkaloid-containing plants, and the observed clinical and pathological findings are typical of this poisoning. The seeds were planted, and botanical identification of the adult plants confirmed the diagnosis of C. spectabilis poisoning.
Collapse
|
5
|
Xiong F, Jiang K, Chen Y, Ju Z, Yang L, Xiong A, Wang Z. Protein cross-linking in primary cultured mouse hepatocytes by dehydropyrrolizidine alkaloids: Structure-toxicity relationship. Toxicon 2020; 186:4-11. [PMID: 32687888 DOI: 10.1016/j.toxicon.2020.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins found in about 3%-5% of flowering plants. Dehydropyrrolizidine alkaloids contain a double bond in 1, 2-position of the necine bases, including retronecine type PAs (RET-PAs) and their N-oxides (RET N-oxide-PAs), and otonecine type PAs (OTO-PAs), and are known for their significant hepatotoxicity. Most dehydropyrrolizidine alkaloids are metabolically activated by cytochrome P450 (CYP450) enzymes to generate active pyrroles, which further bind to proteins to form pyrrole-protein adducts (PPAs). Methods for predicting PA-induced liver injury are generally performed on in vitro models with extremely low activities of CYP450 enzymes, which is different from the situation in vivo. In this regard, primary cultured mouse hepatocytes, which showed comparable CYP450 activity with the in vivo models, were applied to illustrate the structure-toxicity relationship of 13 dehydropyrrolizidine alkaloids, namely, eight RET-PAs, three RET N-oxide-PAs, and two OTO-PAs. PA-induced cytotoxicity and PA-generated PPAs were analyzed in primary mouse hepatocytes treated with different PAs. Results showed that PA-induced toxicity was correlated with the amount of PA-generated PPAs. RET-PAs and OTO-PAs were generally more toxic than RET N-oxide-PAs and generated higher amount of PPAs. PPAs were utilized to evaluate the efficiency of metabolic activation and predict the toxic potencies of dehydropyrrolizidine alkaloids. The proposed model could be a new approach for toxicity evaluation and risk control of exposure to PAs.
Collapse
Affiliation(s)
- Fen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China
| |
Collapse
|
6
|
Gao L, Rutz L, Schrenk D. Structure-dependent hepato-cytotoxic potencies of selected pyrrolizidine alkaloids in primary rat hepatocyte culture. Food Chem Toxicol 2019; 135:110923. [PMID: 31672516 DOI: 10.1016/j.fct.2019.110923] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Contamination of food, feed and herbal medicines with plants containing pyrrolizidine alkaloids (PA) leads to measurable amounts of PA in many products. Since a number of PA are hepatotoxic in humans and animals and hepato-carcinogenic in animal experiments, the assessment of the relative toxic potencies of widely occurring PA contaminants warrants detailed investigation. Here, we studied the hepato-cytotoxic potencies of a number of relevant PA congeners in rat hepatocytes in primary culture. It was found that cyclic and open di-esters were much more toxic than mono-esters. Furthermore, the hepatocellular levels of cytochrome P450-catalyzed 7-benzoxyresorufin O-dealkylase (BROD) activity decreasing over time in culture, played an important role for activation of PA into cytotoxic metabolites. With a highly toxic PA (lasiocarpine), inhibition of BROD activity with ketoconazole markedly reduced toxicity while this was not obvious with the less toxic congener lycopsamine. Depletion of cellular glutathione with buthionine sulfoximine had no significant influence on the effects of highly toxic PA whereas it slightly increased toxicity of less potent congeners. Overall, our data partially confirm previously published structure-dependent interim Relative Potency (iREP) factors although for echimidine and monocrotaline in particular, substantial deviations were found, possibly due to specific toxicokinetic properties of these congeners.
Collapse
Affiliation(s)
- Lan Gao
- Food Chemistry and Toxicology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Rutz
- Food Chemistry and Toxicology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|