1
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
2
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Bagues A, Hu J, Alshanqiti I, Chung MK. Neurobiological mechanisms of botulinum neurotoxin-induced analgesia for neuropathic pain. Pharmacol Ther 2024; 259:108668. [PMID: 38782121 PMCID: PMC11182613 DOI: 10.1016/j.pharmthera.2024.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Botulinum neurotoxins (BoNTs) are a family of neurotoxins produced by Clostridia and other bacteria that induce botulism. BoNTs are internalized into nerve terminals at the site of injection and cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins to inhibit the vesicular release of neurotransmitters. BoNTs have been approved for multiple therapeutic applications, including the treatment of migraines. They have also shown efficacies for treating neuropathic pain, such as diabetic neuropathy, and postherpetic and trigeminal neuralgia. However, the mechanisms underlying BoNT-induced analgesia are not well understood. Peripherally administered BoNT is taken up by the nerve terminals and reduces the release of glutamate, calcitonin gene-related peptide, and substance P, which decreases neurogenic inflammation in the periphery. BoNT is retrogradely transported to sensory ganglia and central terminals in a microtubule-dependent manner. BoNTs decrease the expression of pronociceptive genes (ion channels or cytokines) from sensory ganglia and the release of neurotransmitters and neuropeptides from primary afferent central terminals, which likely leads to decreased central sensitization in the dorsal horn of the spinal cord or trigeminal nucleus. BoNT-induced analgesia is abolished after capsaicin-induced denervation of transient receptor potential vanilloid 1 (TRPV1)-expressing afferents or the knockout of substance P or the neurokinin-1 receptor. Although peripheral administration of BoNT leads to changes in the central nervous system (e.g., decreased phosphorylation of glutamate receptors in second-order neurons, reduced activation of microglia, contralateral localization, and cortical reorganization), whether such changes are secondary to changes in primary afferents or directly mediated by trans-synaptic, transcytotic, or the hematogenous transport of BoNT is controversial. To enhance their therapeutic potential, BoNTs engineered for specific targeting of nociceptive pathways have been developed to treat chronic pain. Further mechanistic studies on BoNT-induced analgesia can enhance the application of native or engineered BoNTs for neuropathic pain treatment with improved safety and efficacy.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Spain
| | - Jiaxin Hu
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ishraq Alshanqiti
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; Program in Dental Biomedical Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA; Department of Basic and Clinical Sciences, School of Dentistry, Umm Al-Qura University, Makkah 24382, Kingdom of Saudi Arabia
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA; Program in Dental Biomedical Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kaji R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023; 234:107264. [PMID: 37657515 DOI: 10.1016/j.toxicon.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Despite the expanding clinical utility of botulinum neurotoxins, there remain problems to be solved for attaining the best outcome. The efficacy and safety need to be reconsidered for commercially available preparations all derived from subtype A1 or B1. Emerging new toxins include A2 or A6 subtypes or engineered toxins with less spread, more potency, longer durations of action, less antigenicity and better safety profile than currently used preparations. Non-toxic BoNTs with a few amino acid replacements of the light chain (LC) may have a role as a drug-delivery system if the toxicity is abolished entirely. At present, efficacy of these BoNTs in animal botulism was demonstrated.
Collapse
Affiliation(s)
- Ryuji Kaji
- Tokushima University, Department of Clinical Neuroscience, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
6
|
Leese C, Christmas C, Mészáros J, Ward S, Maiaru M, Hunt SP, Davletov B. New botulinum neurotoxin constructs for treatment of chronic pain. Life Sci Alliance 2023; 6:e202201631. [PMID: 37041008 PMCID: PMC10098373 DOI: 10.26508/lsa.202201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Chronic pain affects one in five people across human societies, with few therapeutic options available. Botulinum neurotoxin (BoNT) can provide long-lasting pain relief by inhibiting local release of neuropeptides and neurotransmitters, but its highly paralytic nature has limited its analgesic potential. Recent advances in protein engineering have raised the possibility of synthesising non-paralysing botulinum molecules for translation to pain sufferers. However, the synthesis of these molecules, via several synthetic steps, has been challenging. Here, we describe a simple platform for safe production of botulinum molecules for treating nerve injury-induced pain. We produced two versions of isopeptide-bonded BoNT from separate botulinum parts using an isopeptide bonding system. Although both molecules cleaved their natural substrate, SNAP25, in sensory neurons, the structurally elongated iBoNT did not cause motor deficit in rats. We show that the non-paralytic elongated iBoNT targets specific cutaneous nerve fibres and provides sustained pain relief in a rat nerve injury model. Our results demonstrate that novel botulinum molecules can be produced in a simple and safe manner and be useful for treating neuropathic pain.
Collapse
Affiliation(s)
- Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Claire Christmas
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Judit Mészáros
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stephanie Ward
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Maria Maiaru
- Department of Pharmacology, School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK
| | - Stephen P Hunt
- Cell and Developmental Biology, University College London, London, UK
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuresta, Inc., San Diego, CA, USA
| |
Collapse
|
7
|
Okroša AD, Munoz-Lora V, Matak I, Bach-Rojecky L, Kalinichev M, Lacković Z. The safety of botulinum neurotoxin type A's intraarticular application in experimental animals. Toxicon X 2023; 18:100155. [PMID: 37096009 PMCID: PMC10121478 DOI: 10.1016/j.toxcx.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In vivo studies of botulinum neurotoxin type A (BoNT-A) enabled characterization of its activity in the nociceptive sensory system separate from its preferred action in motor and autonomic nerve terminals. However, in the recent rodent studies of arthritic pain which employed high intra-articular (i.a.) doses (expressed as a total number of units (U) per animal or U/kg), possible systemic effects have not been conclusively excluded. Herein we assessed the effect of two pharmaceutical preparations, abobotulinumtoxinA (aboBoNT-A, 10, 20, and 40 U/kg corresponding to 0.05, 0.11, and 0.22 ng/kg neurotoxin) and onabotulinumtoxinA (onaBoNT-A, 10 and 20 U/kg corresponding to 0.09 and 0.18 ng/kg, respectively) injected into the rat knee, on safety-relevant readouts: digit abduction, motor performance and weight gain during 14 days post-treatment. The i. a. toxin produced dose-dependent impairment of the toe spreading reflex and rotarod performance, which was moderate and transient after 10 U/kg onaBoNT-A and ≤20 U/kg aboBoNT-A doses, and severe and long-lasting (examined up to 14 days) after ≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A. In addition, lower toxin doses prevented the normal weight gain compared to controls, while higher doses induced marked weight loss (≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A). Commonly employed BoNT-A formulations, depending on the doses, cause local relaxation of the surrounding muscles and systemic adverse effects in rats. Thus, to evade possible toxin unwanted local or systemic spread, careful dosing and motor testing should be mandatory in preclinical behavioral studies, irrespective of the sites and doses of toxin application.
Collapse
|
8
|
Moore AA, Nelson M, Wickware C, Choi S, Moon G, Xiong E, Orta L, Brideau-Andersen A, Brin MF, Broide RS, Liedtke W, Moore C. OnabotulinumtoxinA effects on trigeminal nociceptors. Cephalalgia 2023; 43:3331024221141683. [PMID: 36751871 PMCID: PMC10652784 DOI: 10.1177/03331024221141683] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND OnabotulinumtoxinA (onabotA) is approved globally for prevention of chronic migraine; however, the classical mechanism of action of onabotA in motor and autonomic neurons cannot fully explain the effectiveness of onabotulinumtoxinA in this sensory neurological disease. We sought to explore the direct effects of onabotulinumtoxinA on mouse trigeminal ganglion sensory neurons using an inflammatory soup-based model of sensitization. METHODS Primary cultured trigeminal ganglion neurons were pre-treated with inflammatory soup, then treated with onabotulinumtoxinA (2.75 pM). Treated neurons were used to examine transient receptor potential vanilloid subtype 1 and transient receptor potential ankyrin 1 cell-surface expression, calcium influx, and neuropeptide release. RESULTS We found that onabotulinumtoxinA cleaved synaptosomal-associated protein-25 kDa in cultured trigeminal ganglion neurons; synaptosomal-associated protein-25 kDa cleavage was enhanced by inflammatory soup pre-treatment, suggesting greater uptake of toxin under sensitized conditions. OnabotulinumtoxinA also prevented inflammatory soup-mediated increases in TRPV1 and TRPA1 cell-surface expression, without significantly altering TRPV1 or TRPA1 protein expression in unsensitized conditions. We observed similar inhibitory effects of onabotulinumtoxinA on TRP-mediated calcium influx and TRPV1- and TRPA1-mediated release of calcitonin gene-related peptide and prostaglandin 2 under sensitized, but not unsensitized control, conditions. CONCLUSIONS Our data deepen the understanding of the sensory mechanism of action of onabotulinumtoxinA and support the notion that, once endocytosed, the cytosolic light chain of onabotulinumtoxinA cleaves synaptosomal-associated protein-25 kDa to prevent soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated processes more generally in motor, autonomic, and sensory neurons.
Collapse
Affiliation(s)
- Ashley A Moore
- Department of Neurology, Duke University, Durham, NC, USA
| | | | | | - Shinbe Choi
- Department of Neurology, Duke University, Durham, NC, USA
| | - Gene Moon
- Department of Neurology, Duke University, Durham, NC, USA
| | - Emma Xiong
- Department of Neurology, Duke University, Durham, NC, USA
| | - Lily Orta
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Mitchell F Brin
- Allergan, an AbbVie company, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NC, USA
- Department of Molecular Pathobiology – Dental Pain Research, New York University College of Dentistry, New York, NY, USA
| | - Carlene Moore
- Department of Neurology, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Chi K, Zou Y, Liu C, Dong Z, Liu Y, Guo N. Staphylococcal enterotoxin A induces DNA damage in hepatocytes and liver tissues. Toxicon 2022; 221:106980. [DOI: 10.1016/j.toxicon.2022.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
11
|
Staurengo-Ferrari L, Deng L, Chiu IM. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 2022; 163:S57-S68. [PMID: 36252233 PMCID: PMC9586460 DOI: 10.1097/j.pain.0000000000002721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Larissa Staurengo-Ferrari
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Liwen Deng
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Isaac M. Chiu
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Oehler B, Périer C, Martin V, Fisher A, Lezmi S, Kalinichev M, McMahon SB. Evaluation of Recombinant Botulinum Neurotoxin Type A1 Efficacy in Peripheral Inflammatory Pain in Mice. Front Mol Neurosci 2022; 15:909835. [PMID: 35694440 PMCID: PMC9179158 DOI: 10.3389/fnmol.2022.909835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Well-established efficacy of botulinum neurotoxin type A (BoNT/A) in aesthetic dermatology and neuromuscular hyperactivity disorders relies on canonical interruption of acetylcholine neurotransmission at the neuromuscular junction at the site of the injection. The mechanisms and the site of activity of BoNT/A in pain, on the other hand, remain elusive. Here, we explored analgesic activity of recombinant BoNT/A1 (rBoNT/A1; IPN10260) in a mouse model of inflammatory pain to investigate the potential role of peripheral sensory afferents in this activity. After confirming analgesic efficacy of rBoNT/A1 on CFA-induced mechanical hypersensitivity in C57Bl6J mice, we used GCaMP6s to perform in vivo calcium imaging in the ipsilateral dorsal root ganglion (DRG) neurons in rBoNT/A1 vs. vehicle-treated mice at baseline and following administration of a range of mechanical and thermal stimuli. Additionally, immunohisochemical studies were performed to detect cleaved SNAP25 in the skin, DRGs and the spinal cord. Injection of CFA resulted in reduced mechanical sensitivity threshold and increased calcium fluctuations in the DRG neurons. While rBoNT/A1 reduced mechanical hypersensitivity, calcium fluctuations in the DRG of rBoNT/A1- and vehicle-treated animals were similar. Cleaved SNAP25 was largely absent in the skin and the DRG but present in the lumbar spinal cord of rBoNT/A1-treated animals. Taken together, rBoNT/A1 ameliorates mechanical hypersensitivity related to inflammation, while the signal transmission from the peripheral sensory afferents to the DRG remained unchanged. This strengthens the possibility that spinal, rather than peripheral, mechanisms play a role in the mediation of analgesic efficacy of BoNT/A in inflammatory pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Beatrice Oehler
| | | | | | - Amy Fisher
- Transpharmation Ltd., London, United Kingdom
| | | | | | - Stephen B. McMahon
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Li X, Ye Y, Wang L, Zhou W, Chu X, Li T. Botulinum toxin type a combined with transcranial direct current stimulation reverses the chronic pain induced by osteoarthritis in rats. Toxicon 2022; 212:42-48. [DOI: 10.1016/j.toxicon.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
14
|
Barreto RR, Veras PJL, de Oliveira Leite G, Vieira Neto AE, Zogheib LV, Sessle BJ, Campos AR. Botulinum toxin promotes orofacial antinociception by modulating TRPV1 and NMDA receptors in adult zebrafish. Toxicon 2022; 210:158-166. [DOI: 10.1016/j.toxicon.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
15
|
Ibrahim H, Maignel J, Hornby F, Daly D, Beard M. BoNT/A in the Urinary Bladder-More to the Story than Silencing of Cholinergic Nerves. Toxins (Basel) 2022; 14:53. [PMID: 35051030 PMCID: PMC8780360 DOI: 10.3390/toxins14010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A's effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.
Collapse
Affiliation(s)
- Hodan Ibrahim
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France;
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - Donna Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, UK; (H.I.); (D.D.)
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| |
Collapse
|
16
|
Yang H, Wang L, Chu X, Shi X, Li X, Li T. BoNT/A alleviates neuropathic pain in osteoarthritis by down-regulating the expression of P2X4R in spinal microglia. Toxicon 2021; 206:55-63. [PMID: 34954133 DOI: 10.1016/j.toxicon.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/25/2023]
Abstract
Neuropathic pain in osteoarthritis is one of the reasons why the pain is difficult to treat, and P2X4R plays an important role in neuropathic pain. In addition, BoNT/A has been proven to have analgesic effects on both neuropathic pain and osteoarthritis, but its exact mechanism is still unknown. This study aims to investigate the relationship between the analgesic effect of BoNT/A on osteoarthritis and the expression of P2X4R in spinal cord microglia. The analgesic effect was compared between BoNT/A and compound betamethasone. Western blot analysis was used to examine the expression of P2X4R and BDNF proteins in the spinal cord. Immunohistochemistry was used to determine the cellular location of P2X4R. Mechanical allodynia and weight asymmetry were identified using the hind paw withdrawal threshold and weight bearing test. The results showed that intra-articular injection of MIA induced persistent mechanical allodynia and weight asymmetry in rats. Both BoNT/A and betamethasone could relieve pain behavior in rats, but BoNT/A had a more obvious effect and lasted longer. Furthermore, BoNT/A could reverse the MIA-induced overexpression of BDNF and P2X4R in the spinal dorsal horn. To sum up, BoNT/A is more effective than betamethasone in relieving MIA-induced osteoarthritis pain in rats, and its analgesic effect may be related to the regulation of P2X4R-mediated BDNF release in spinal microglia and the relief of neuropathic pain in osteoarthritis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou, PR China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
17
|
Li X, Ye Y, Zhou W, Shi Q, Wang L, Li T. Anti-Inflammatory Effects of BoNT/A Against Complete Freund's Adjuvant-Induced Arthritis Pain in Rats: Transcriptome Analysis. Front Pharmacol 2021; 12:735075. [PMID: 34803684 PMCID: PMC8602683 DOI: 10.3389/fphar.2021.735075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Arthritis is the most common cause to lead to chronic pain. Botulinum toxin type A (BoNT/A) has been widely used to treat chronic pain. In our previous study, we confirmed the anti-inflammatory and antinociceptive effects of BoNT/A in the Complete Freund’s Adjuvant (CFA)-induced arthritis model, but the underlying anti-inflammatory mechanism was not fully elucidated. The purpose of this study was to investigate the anti-inflammatory effects and mechanisms of BoNT/A on arthritis using transcriptomic analysis. The BoNT/A was injected into the rat ankle joint on day 21 after CFA injection. The von Frey and hot plate tests were applied to assess the pain-related behaviors at different time points. Five days after BoNT/A treatment, gene expression profiling in dorsal root ganglion (DRG) was performed using RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) were analyzed by various tools. The mechanical allodynia and thermal hyperalgesia were significantly reversed after BoNT/A injection. RNA-seq revealed 97 DEGs between the CFA group and Sham group; these DEGs were enriched inflammatory response, IL-17 signaling pathway, etc. There are 71 DEGs between the CFA+BoNT/A group and the CFA group; these DEGs related to response to peptide, PI3K-Akt signaling pathway, ECM–receptor interactions, etc. Three key genes were significantly decreased after CFA-induced arthritis pain, while BoNT/A increased the expression of these genes. The identification of S100A9, S100A8, and MMP8 genes can provide new therapeutic targets for arthritis pain and affect the signaling pathway to play an anti-inflammatory role after the treatment of BoNT/A.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qilin Shi
- Department of Rehabilitation Medicine, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Novakovic D, Sheth M, Stewart T, Sandham K, Madill C, Chacon A, Nguyen DD. Supraglottic Botulinum Toxin Improves Symptoms in Patients with Laryngeal Sensory Dysfunction Manifesting as Abnormal Throat Sensation and/or Chronic Refractory Cough. J Clin Med 2021; 10:jcm10235486. [PMID: 34884187 PMCID: PMC8658444 DOI: 10.3390/jcm10235486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laryngeal sensory dysfunction (LSD) encompasses disorders of the vagal sensory pathways. Common manifestations include chronic refractory cough (CRC) and abnormal throat sensation (ATS). This study examined clinical characteristics and treatment outcomes of LSD using a novel approach of laryngeal supraglottic Onabotulinum toxin Type A injection (BTX). This was a retrospective review of clinical data and treatment outcomes of supraglottic BTX in patients with LSD. Between November 2019 and May 2021, 14 patients underwent 25 injection cycles of supraglottic BTX for treatment of symptoms related to LSD, including ATS and CRC. Primary outcome measures included the Newcastle Laryngeal Hypersensitivity Questionnaire (LHQ), Cough Severity Index (CSI), Reflux Symptom Index (RSI), and Voice Handicap Index-10 (VHI-10) at baseline and within three months of treatment. Pre- and post-treatment data were compared using a linear mixed model. After supraglottic BTX, LHQ scores improved by 2.6. RSI and CSI improved by 8.0 and 5.0, respectively. VHI-10 did not change as a result of treatment. Short-term response to SLN block was significantly associated with longer term response to BTX treatment. These findings suggest that LSD presents clinically as ATS and CRC along with other upper airway symptoms. Supraglottic BTX injection is a safe and effective technique in the treatment of symptoms of LSD.
Collapse
Affiliation(s)
- Daniel Novakovic
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
- The Canterbury Hospital, Campsie, NSW 2194, Australia
- Sydney Voice and Swallowing, St. Leonards, NSW 2065, Australia;
- Correspondence:
| | - Meet Sheth
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
- Department of Otolaryngology, Christian Medical College, Vellore 632004, India
| | - Thomas Stewart
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
- Sydney Voice and Swallowing, St. Leonards, NSW 2065, Australia;
| | - Katrina Sandham
- Sydney Voice and Swallowing, St. Leonards, NSW 2065, Australia;
| | - Catherine Madill
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
| | - Antonia Chacon
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
| | - Duy Duong Nguyen
- Voice Research Laboratory, Discipline of Speech Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (T.S.); (C.M.); (A.C.); (D.D.N.)
- National Hospital of Otorhinolaryngology, Hanoi 11519, Vietnam
| |
Collapse
|
19
|
Go EJ, Ji J, Kim YH, Berta T, Park CK. Transient Receptor Potential Channels and Botulinum Neurotoxins in Chronic Pain. Front Mol Neurosci 2021; 14:772719. [PMID: 34776867 PMCID: PMC8586451 DOI: 10.3389/fnmol.2021.772719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering from unrelieved chronic pain. Despite widespread recognition of the importance of developing better interventions for the relief of chronic pain, little is known about the mechanisms underlying this condition. However, transient receptor potential (TRP) ion channels in nociceptors have been shown to be essential players in the generation and progression of pain and have attracted the attention of several pharmaceutical companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed in clinical trials, at least in part due to their thermoregulatory function. Botulinum neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming evident that BoNTs also regulate the expression and function of TRP channels, which may explain their analgesic effects. Here, we summarize the roles of TRP channels in pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly discuss the use of BoNTs for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eun Jin Go
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jeongkyu Ji
- Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
20
|
The Use of Botulinum Toxin A as an Adjunctive Therapy in the Management of Chronic Musculoskeletal Pain: A Systematic Review with Meta-Analysis. Toxins (Basel) 2021; 13:toxins13090640. [PMID: 34564644 PMCID: PMC8473399 DOI: 10.3390/toxins13090640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/24/2023] Open
Abstract
Several studies have investigated the effect of botulinum toxin A (BoNT-A) for managing chronic musculoskeletal pain, bringing contrasting results to the forefront. Thus far, however, there has been no synthesis of evidence on the effect of BoNT-A as an adjunctive treatment within a multimodal approach. Hence, Medline via PubMed, EMBASE, and the Cochrane Library-CENTRAL were searched until November 2020 for randomised controlled trials (RCTs) that investigated the use of BoNT-A as an adjunctive therapy for chronic musculoskeletal pain. The risk of bias (RoB) and the overall quality of the studies were assessed through RoB 2.0 and the GRADE approach, respectively. Meta-analysis was conducted to analyse the pooled results of the six included RCTs. Four were at a low RoB, while two were at a high RoB. The meta-analysis showed that BoNT-A as an adjunctive therapy did not significantly decrease pain compared to the sole use of traditional treatment (SDM -0.89; 95% CI -1.91; 0.12; p = 0.08). Caution should be used when interpreting such results, since the studies displayed very high heterogeneity (I = 94%, p < 0.001). The overall certainty of the evidence was very low. The data retrieved from this systematic review do not support the use of BoNT-A as an adjunctive therapy in treating chronic musculoskeletal pain.
Collapse
|
21
|
Affiliation(s)
- Haya S. Raef
- Tufts University School of Medicine, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarina B. Elmariah
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Cortes-Altamirano JL, Morraz-Varela A, Reyes-Long S, Gutierrez M, Bandala C, Clavijo-Cornejo D, Alfaro-Rodriguez A. Chemical Mediators' Expression Associated with the Modulation of Pain in Rheumatoid Arthritis. Curr Med Chem 2021; 27:6208-6218. [PMID: 31419924 DOI: 10.2174/0929867326666190816225348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The management of pain in patients with rheumatoid arthritis (RA) is a complex subject due to the autoimmune nature of the pathology. Studies have shown that chemical mediators play a fundamental role in the determination, susceptibility and modulation of pain at different levels of the central and peripheral nervous system, resulting in interesting novel molecular targets to mitigate pain in patients with RA. However, due to the complexity of pain physiology in RA cand the many chemical mediators, the results of several studies are controversial. OBJECTIVE The aim of this study was to identify the chemical mediators that are able to modulate pain in RA. METHOD In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies that evaluated the expression of chemical mediators on the modulation of pain in RA. RESULTS Few studies have highlighted the importance of the expression of some chemical mediators that modulate pain in patients with rheumatoid arthritis. The expression of TRPV1, ASIC-3, and TDV8 encode ionic channels in RA and modulates pain, likewise, the transcription factors in RA, such as TNFα, TGF-β1, IL-6, IL-10, IFN-γ, IL-1b, mTOR, p21, caspase 3, EDNRB, CGRPCALCB, CGRP-CALCA, and TAC1 are also directly involved in pain perception. CONCLUSION The expression of all chemical mediators is directly related to RA and the modulation of pain by a complex intra and extracellular signaling pathway, however, transcription factors are involved in modulating acute pain, while the ionic channels are involved in chronic pain in RA.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Department of Chiropractic, State University of the Valley of Ecatepec (UNEVE), Ecatepec de Morelos, Estado de México, México
| | - Abril Morraz-Varela
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| | - Samuel Reyes-Long
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Marwin Gutierrez
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Cindy Bandala
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Denise Clavijo-Cornejo
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Alfonso Alfaro-Rodriguez
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| |
Collapse
|
23
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
24
|
Lyu J, Wen J, Guo R, Zhu Y, Liang H, Gao M, Wang H, Lai W, Long H. Botulinum toxin A alleviates orofacial nociception induced by orthodontic tooth movement through nociceptin/orphanin-FQ pathway in rats. Arch Oral Biol 2020; 117:104817. [PMID: 32603879 DOI: 10.1016/j.archoralbio.2020.104817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To investigate the effect and mechanism of botulinum neurotoxin type A (BoNT/A) in the modulation of orofacial nociception induced by orthodontic tooth movement in rats. METHODS An orofacial nociception model was established in male Sprague-Dawley rats by ligating closed-coil springs between incisors and ipsilateral molars. There were two group sets of animals. For the first group set, 120 rats were randomly divided into four groups: no-force group (n = 30), force + saline group (n = 30), force + low dose BoNT/A group (1U/6 μL, n = 30), and force + high dose BoNT/A group (1U/6 μL, n = 30). BoNT/A and saline were injected into periodontal ligament to explore the nociceptive effect of BoNT/A. Ipsilateral trigeminal ganglia (TG) were harvested for detecting the expression levels of nociceptin/orphanin-FQ (N/OFQ). For the second group set, 36 rats were randomly divided into three force groups: BoNT/A + saline group (n = 12), BoNT/A + UFP-101 group (n = 12), and saline + UFP-101 group (n = 12). A potent N/OFQ receptor (NOP) antagonist (UFP-101) was used to examine the role of N/OFQ in BoNT/A-induced antinociception. Tooth-movement nociception level of all groups was evaluated by bite force and rat grimace scale (RGS) at baseline, day 1, day 3, day 5, day 7, day 14. RESULTS The behavioral assessments showed the orofacial nociception level in the force + low dose BoNT/A group and force + high dose BoNT/A group were lower than that in the force + saline group. No significant difference was observed in orofacial nociception among no-force group, force + low dose and force + high dose group. The expression levels of N/OFQ in TG were elevated from day 1 and maintained a high level, presenting in descending order among the force + high dose, force + low dose, force + saline and no-force group, respectively. The nociception level of the BoNT/A + UFP-101 group was higher than that of the BoNT/A + saline group. No significant difference was observed between the BoNT/A + UFP-101 group and the saline + UFP-101 group. CONCLUSIONS BoNT/A can exert an antinociceptive effect on orofacial nociception induced by tooth movement by stimulating the expression of N/OFQ in TG.
Collapse
Affiliation(s)
- Jiahong Lyu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Wen
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Guo
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafen Zhu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hengyan Liang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiya Gao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- The Plastic and Cosmetic Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Blanshan N, Krug H. The Use of Botulinum Toxin for the Treatment of Chronic Joint Pain: Clinical and Experimental Evidence. Toxins (Basel) 2020; 12:toxins12050314. [PMID: 32397671 PMCID: PMC7291335 DOI: 10.3390/toxins12050314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic osteoarthritis pain is an increasing worldwide problem. Treatment for osteoarthritis pain is generally inadequate or fraught with potential toxicities. Botulinum toxins (BoNTs) are potent inhibitors of neuropeptide release. Paralytic toxicity is due to inhibition at the neuromuscular junction, and this effect has been utilized for treatments of painful dystonias. Pain relief following BoNT muscle injection has been noted to be more significant than muscle weakness and hypothesized to occur because of the inhibition of peripheral neuropeptide release and reduction of peripheral sensitization. Because of this observation, BoNT has been studied as an intra-articular (IA) analgesic for chronic joint pain. In clinical trials, BoNT appears to be effective for nociceptive joint pain. No toxicity has been reported. In preclinical models of joint pain, BoNT is similarly effective. Examination of the dorsal root ganglion (DRG) and the central nervous system has shown that catalytically active BoNT is retrogradely transported by neurons and then transcytosed to afferent synapses in the brain. This suggests that pain relief may also be due to the central effects of the drug. In summary, BoNT appears to be safe and effective for the treatment of chronic joint pain. The long-term effects of IA BoNT are still being determined.
Collapse
Affiliation(s)
- Nicole Blanshan
- Minneapolis VA Health Care System, Minneapolis, MN 55455, USA;
| | - Hollis Krug
- Minneapolis VA Health Care System, Minneapolis, MN 55455, USA;
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-467-4190
| |
Collapse
|
26
|
Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020; 178:33-40. [PMID: 32250746 DOI: 10.1016/j.toxicon.2019.12.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Chronic inflammatory pain is a serious clinical problem caused by inflammation of the joints and degenerative diseases and greatly affects patients' quality of life. Persistent pain states are thought to result from the central sensitization of nociceptive pathways in the spinal dorsal horn. Spinal microglia-mediated neuroinflammation plays a pivotal role in the development and maintenance of the central sensitization of chronic inflammatory pain. Botulinum toxin type A (BoNT/A) was recently reported to have analgesic and anti-inflammatory effects. However, the precise mechanism underlying its analgesic effect remains unclear. Although several studies have reported that BoNT/A could regulate neuroflammation, the reduction of neuroinflammation regulated by BoNT/A in chronic inflammatory pain in experimentally induced arthritis has not been reported. The aim of this study was to investigate whether BoNT/A could alleviate adjuvant-arthritis pain via modulating microglia-mediated neuroinflammation and intracellular molecular pathway. The pain behavioral tests were performed before and after CFA immunization as well as after BoNT/A injection. Western blotting and immunofluorescence staining were used to assess the changes of microglial activation markers (ionized calcium binding adaptor molecule 1, IBA-1) and phosphorylation of P38MAPK (P-p38MAPK) in the lumbar spinal cord. TNF-αand P2X4R gene expression were studied by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that (1) the activation of spinal microglia can be continued till 21 days after CFA injection, which suggested its role in the development and maintenance of chronic inflammatory pain. (2) The intra-articular administration of a single effective dose of BoNT/A (5U/10 U) on day 21 after CFA injection significantly reduced nociceptive behaviors and decreased protein overexpression and immunoreactivity for IBA-1 and P-p38MAPK in CFA induced rat. Simultaneously, BoNT/A (5 U) also inhibited the increase in TNF-α mRNA and P2X4R mRNA expression induced by CFA injection. These results suggested that BoNT/A is a potential therapeutic agent for relieving the neuroinflammation that occurs in chronic inflammatory pain by inhibiting the activation of microglial cells and the release of microglia-derived TNF-α. This effect is likely mediated by inhibiting the activation of the P2X4R-P38MAPK signaling pathways in spinal microglial cells.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, PR China
| | - Qilin Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Hui Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
27
|
The Use of Botulinum Toxin in Pain Management: Basic Science and Clinical Applications. Plast Reconstr Surg 2020; 145:629e-636e. [DOI: 10.1097/prs.0000000000006559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
New analgesic: Focus on botulinum toxin. Toxicon 2020; 179:1-7. [PMID: 32174507 DOI: 10.1016/j.toxicon.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023]
Abstract
In 2010, Kissin concluded pessimistically that of the 59 new drugs introduced in the fifty-year period between 1960 and 2009 and still in use, only seven had new molecular targets. Of these, only one, sumatriptan, was effective enough to lead to the introduction of multiple drugs targeting the same target molecules (triptans) (Kissin, 2010). Morphine and acetylsalicylic acid (aspirin), introduced for the treatment of pain more than a century ago, continue to dominate biomedical publications despite their limited effectiveness in many areas (e.g., neuropathic pain) and serious adverse effects. Today, are we really closer to ideal analgesics that would work hard enough, long enough, and did not have unwanted side effects? The purpose of the present article is to analyze where we are now. Several drugs, like long-acting opioids or botulinum toxins open some hope. Advantage of botulinum toxin A is unique duration of action (months). New discoveries showed that after peripheral application botulinum toxin by axonal transport reaches the CNS. Major analgesic mechanism of action seems to be of central origin. Will botulinum toxin in the CNS bring new indications and or/adverse effects? Much more basic and clinical research should be in front of us. Although relatively safe as a drug, botulinum toxin is not without adverse effect. Policy makers, clinicians and all those applying botulinum toxin should be aware of that. Unfortunately the life without the pain is still not possible.
Collapse
|
29
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
30
|
Cost-Effectiveness of Long-Term, Targeted OnabotulinumtoxinA versus Peripheral Trigger Site Deactivation Surgery for the Treatment of Refractory Migraine Headaches. Plast Reconstr Surg 2020; 145:401e-406e. [DOI: 10.1097/prs.0000000000006480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Botulinum Neurotoxins and Cancer-A Review of the Literature. Toxins (Basel) 2020; 12:toxins12010032. [PMID: 31948115 PMCID: PMC7020400 DOI: 10.3390/toxins12010032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNT) possess an analgesic effect through several mechanisms including an inhibition of acetylcholine release from the neuromuscular junction as well as an inhibition of specific pain transmitters and mediators. Animal studies have shown that a peripheral injection of BoNTs impairs the release of major pain transmitters such as substance P, calcitonin gene related peptide (CGRP) and glutamate from peripheral nerve endings as well as peripheral and central neurons (dorsal root ganglia and spinal cord). These effects lead to pain relief via the reduction of peripheral and central sensitization both of which reflect important mechanisms of pain chronicity. This review provides updated information about the effect of botulinum toxin injection on local pain caused by cancer, painful muscle spasms from a remote cancer, and pain at the site of cancer surgery and radiation. The data from the literature suggests that the local injection of BoNTs improves muscle spasms caused by cancerous mass lesions and alleviates the post-operative neuropathic pain at the site of surgery and radiation. It also helps repair the parotid damage (fistula, sialocele) caused by facial surgery and radiation and improves post-parotidectomy gustatory hyperhidrosis. The limited literature that suggests adding botulinum toxins to cell culture slows/halts the growth of certain cancer cells is also reviewed and discussed.
Collapse
|
32
|
Wang J, Xu W, Kong Y, Huang J, Ding Z, Deng M, Guo Q, Zou W. SNAP-25 Contributes to Neuropathic Pain by Regulation of VGLuT2 Expression in Rats. Neuroscience 2019; 423:86-97. [PMID: 31705888 DOI: 10.1016/j.neuroscience.2019.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022]
Abstract
Synaptosomal-associated protein 25 (SNAP-25) plays an important role in neuropathic pain. However, the underlying mechanism is largely unknown. Vesicular glutamate transporter 2 (VGluT2) is an isoform of vesicular glutamate transporters that controls the storage and release of glutamate. In the present study, we found the expression levels of VGluT2 correlated with the upregulation of SNAP-25 in the spinal cord of rats following chronic constriction injury (CCI)-induced neuropathic pain. Cleavage of SNAP-25 by Botulinum toxin A (BoNT/A) attenuated mechanical allodynia, downregulated the expression of VGluT2 and reduced glutamate release. Overexpression of VGluT2 abolished the antinociceptive effect of BoNT/A. Upregulation of SNAP-25 in naive rats increased VGluT2 expression and induced pain-responsive behaviors. In pheochromocytoma (PC12) cells, the expression of VGluT2 was also depended on SNAP-25 dysregulation. Moreover, we found VGluT2 was involved in SNAP-25-mediated regulation of astrocyte expression and activation of the PKA/p-CREB pathway mediated the upregulation of SNAP-25 in neuropathic pain. The findings of our study indicate that VGluT2 contributes to the effect of SNAP-25 in maintaining the development of neuropathic pain and suggests a novel mechanism underlying SNAP-25 regulation of neuropathic pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, China
| | - Yan Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
33
|
Chen CH, Tyagi P, Chuang YC. Promise and the Pharmacological Mechanism of Botulinum Toxin A in Chronic Prostatitis Syndrome. Toxins (Basel) 2019; 11:toxins11100586. [PMID: 31614473 PMCID: PMC6832516 DOI: 10.3390/toxins11100586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 11/24/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/ CPPS) has a negative impact on the quality of life, and its etiology still remains unknown. Although many treatment protocols have been evaluated in CP/CPPS, the outcomes have usually been disappointing. Botulinum neurotoxin A (BoNT-A), produced from Clostridium botulinum, has been widely used to lower urinary tract dysfunctions such as detrusor sphincter dyssynergia, refractory overactive bladder, interstitial cystitis/bladder pain syndromes, benign prostatic hyperplasia, and CP/ CPPS in urology. Here, we review the published evidence from animal models to clinical studies for inferring the mechanism of action underlying the therapeutic efficacy of BoNT in CP/CPPS. Animal studies demonstrated that BoNT-A, a potent inhibitor of neuroexocytosis, impacts the release of sensory neurotransmitters and inflammatory mediators. This pharmacological action of BoNT-A showed promise of relieving the pain of CP/CPPS in placebo-controlled and open-label BoNT-A and has the potential to serve as an adjunct treatment for achieving better treatment outcomes in CP/CPPS patients.
Collapse
Affiliation(s)
- Chien-Hsu Chen
- Department of Urology 1, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine2, Pittsburgh, PA 15213, USA.
| | - Yao-Chi Chuang
- Department of Urology 1, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
34
|
Marciniec M, Szczepańska-Szerej A, Kulczyński M, Sapko K, Popek-Marciniec S, Rejdak K. Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known? Rev Neurosci 2019; 30:771-779. [DOI: 10.1515/revneuro-2018-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Pain is the most common and disabling non-motor symptom in cervical dystonia (CD). Up to 88.9% of patients report pain at some point in the course of the disease. It is still a matter of debate whether CD-related pain originates only from prolonged muscle contraction. Recent data suggest that the alterations of transmission and processing of nociceptive stimuli play a crucial role in pain development. Botulinum toxin (BT) is the first-line therapy for CD. Despite fully elucidated muscle relaxant action, the antinociceptive effect of BT remains unclear and probably exceeds a simple decompression of the nerve fibers due to the reduction in muscle tone. The proposed mechanisms of the antinociceptive action of BT include inhibition of pain mediator release, inhibition of membrane sodium channels, retrograde axonal transport and impact on the other pain pathways. This article summarizes the current knowledge about the antinociceptive properties of BT and the clinical analgesic efficacy in the treatment of CD patients.
Collapse
Affiliation(s)
- Michał Marciniec
- Chair and Department of Neurology , Medical University of Lublin , Independent Public Clinical Hospital , No. 4, ul. Jaczewskiego 8 , 20-954 Lublin , Poland
| | | | - Marcin Kulczyński
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Klaudia Sapko
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Sylwia Popek-Marciniec
- Department of Cancer Genetics with Cytogenetics Laboratory , Medical University of Lublin , Lublin , Poland
| | - Konrad Rejdak
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
35
|
Nugent M, Yusef YR, Meng J, Wang J, Dolly JO. A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα-induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology 2018; 138:257-266. [PMID: 29906413 DOI: 10.1016/j.neuropharm.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 01/28/2023]
Abstract
Transient receptor potential (TRP) vallinoid 1 (TRPV1) and ankyrin 1 (TRPA1) are two transducing channels expressed on peripheral sensory nerves involved in pain sensation. Upregulation of their expression, stimulated by inflammatory cytokines and growth factors in animal pain models, correlate with the induction of nociceptive hyper-sensitivity. Herein, we firstly demonstrate by immuno-cytochemical labelling that TNFα augments the surface content of these channels on rat cultured dorsal root ganglion (DRG) neurons which, in turn, enhances the electrophysiological and functional responses of the latter to their specific agonists. A molecular basis underlying this TNFα-dependent enhancement was unveiled by pre-treating DRGs with a recently-published chimeric protein, consisting of the protease light chain (LC) of botulinum neurotoxin (BoNT) serotype E fused to full-length BoNT/A (LC/E-BoNT/A). This cleaves synaptosomal-associated protein of Mr 25k (SNAP-25) and reported previously to exhibit anti-nociceptive activity in a rat model of neuropathic pain. Low pM concentrations of this chimera were found to prevent the TNFα-stimulated delivery of TRPV1/A1 to the neuronal plasmalemma and, accordingly, decreased their incremental functional activities relative to those of control cells, an effect accompanied by SNAP-25 cleavage. Advantageously, LC/E-BoNT/A did not reduce the basal surface contents of the two channels or their pharmacological responses. Thus, use of multiple complementary methodologies provides evidence that LC/E-BoNT/A abolishes the TNFα-dependent augmented, but not resting, surface trafficking of TRPV1/A1. As TNFα is known to induce nociceptive hyper-sensitivity in vivo, our observed inhibition by LC/E-BoNT/A of its action in vitro could contribute to its potential alleviation of pain.
Collapse
Affiliation(s)
- Marc Nugent
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Yamil R Yusef
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jianghui Meng
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
36
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
37
|
Park J, Park HJ. Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins (Basel) 2017; 9:E260. [PMID: 28837075 PMCID: PMC5618193 DOI: 10.3390/toxins9090260] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin (BoNT) has been used as a treatment for excessive muscle stiffness, spasticity, and dystonia. BoNT for approximately 40 years, and has recently been used to treat various types of neuropathic pain. The mechanism by which BoNT acts on neuropathic pain involves inhibiting the release of inflammatory mediators and peripheral neurotransmitters from sensory nerves. Recent journals have demonstrated that BoNT is effective for neuropathic pain, such as postherpetic neuralgia, trigeminal neuralgia, and peripheral neuralgia. The purpose of this review is to summarize the experimental and clinical evidence of the mechanism by which BoNT acts on various types of neuropathic pain and describe why BoNT can be applied as treatment. The PubMed database was searched from 1988 to May 2017. Recent studies have demonstrated that BoNT injections are effective treatments for post-herpetic neuralgia, diabetic neuropathy, trigeminal neuralgia, and intractable neuropathic pain, such as poststroke pain and spinal cord injury.
Collapse
Affiliation(s)
- JungHyun Park
- Department of Anaesthesiology & Pain Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea.
| | - Hue Jung Park
- Department of Anaesthesiology & Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|