1
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
2
|
Liu M, Zhou S, Cao Y, Yang K, Xiao Y, Wang W. Characterization of MAP c21873-1 as a new counter-selectable marker for unmarked genetic modification of Pichia pastoris. Microb Cell Fact 2024; 23:224. [PMID: 39118053 PMCID: PMC11312372 DOI: 10.1186/s12934-024-02496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Selection markers are useful in genetic modification of yeast Pichia pastoris. However, the leakage of the promoter caused undesired expression of selection markers especially those toxic proteins like MazF, halting the cell growth and hampering the genetic manipulation in procaryotic system. In this study, a new counter-selectable marker-based strategy has been established for seamless modification with high efficiency and low toxicity. RESULTS At first, the leaky expression of the enhanced green fluorescent protein (EGFP) as a reporter gene under the control of six inducible promoters of P. pastoris was investigated in two hosts Escherichia coli and P. pastoris, respectively. The results demonstrated that the DAS1 and FDH1 promoters (PDAS1 and PFDH1) had the highest leakage expression activities in procaryotes and eukaryotes, and the DAS2 promoter (PDAS2) was inducible with medium strength but low leakage expression activity, all of which were selected for further investigation. Next, Mirabilis antiviral proteins (MAPs) c21873-1, c21873-1T (truncated form of c21873-1) and c23467 were mined as the new counter-selectable markers, and hygromycin B (Hyg B) resistance gene was used as the positive-selectable marker, respectively. Then, modular plasmids with MAP-target gene-Hyg B cassettes were constructed and used to transform into P. pastoris cells after linearization, and the target genes were integrated into its genome at the BmT1 locus through single-crossover homologous recombination (HR). After counter-selection induced by methanol medium, the markers c21873-1 and c21873-1T were recycled efficiently. But c23467 failed to be recycled due to its toxic effect on the P. pastoris cells. At last, the counter-selectable marker c21873-1 under the tightly regulated PDAS2 enabled the encoding genes of reporter EGFP and tested proteins to be integrated into the target locus and expressed successfully. CONCLUSIONS We have developed MAP c21873-1 as a novel counter-selectable marker which could perform efficient gene knock-in by site-directed HR. Upon counter-selection, the marker could be recycled for repeated use, and no undesirable sequences were introduced except for the target gene. This unmarked genetic modification strategy may be extended to other genetic modification including but not limited to gene knock-out and site-directed mutagenesis in future.
Collapse
Affiliation(s)
- Minzhi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Sihan Zhou
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yunsong Cao
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Keqin Yang
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yao Xiao
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BMC Genomics 2024; 25:353. [PMID: 38594632 PMCID: PMC11003161 DOI: 10.1186/s12864-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
Affiliation(s)
- Bretta Hixson
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Louise Huot
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaowei Yang
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Current address: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peter Nagy
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Li XP, Rudolph MJ, Chen Y, Tumer NE. Structure-Function Analysis of the A1 Subunit of Shiga Toxin 2 with Peptides That Target the P-Stalk Binding Site and Inhibit Activity. Biochemistry 2024; 63:893-905. [PMID: 38467020 PMCID: PMC11418911 DOI: 10.1021/acs.biochem.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
5
|
Ragucci S, Russo V, Clemente A, Campanile MG, Oliva MA, Landi N, Pedone PV, Arcella A, Di Maro A. Hortensins, Type 1 Ribosome-Inactivating Proteins from Seeds of Red Mountain Spinach: Isolation, Characterization, and Their Effect on Glioblastoma Cells. Toxins (Basel) 2024; 16:135. [PMID: 38535801 PMCID: PMC10975204 DOI: 10.3390/toxins16030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Ribosome inactivating proteins (RIPs) are specific N-β-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the β-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Veronica Russo
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Angela Clemente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Giuseppina Campanile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Antonietta Oliva
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonietta Arcella
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
6
|
Liu J, Wen D, Song X, Su P, Lou J, Yao D, Zhang C. Evolution and natural selection of ribosome-inactivating proteins in bacteria, fungi, and plants. Int J Biol Macromol 2023; 248:125929. [PMID: 37481176 DOI: 10.1016/j.ijbiomac.2023.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are found in bacteria, fungi, and plants, with a wide range of biological resistances such as anti-fungal, anti-viral, anti-insect, and anti-tumor. They can be roughly divided into proactive defense bacterial or fungal types and passive defense plant types. We identified 1592 RIP genes in bacteria, fungi, and plants. Approximately 88 % of the 764 bacterial RIPs were Shiga or Shiga-like toxins which were exotoxins and could rapidly enter cells to possess strong biotoxicity, and about 98 % of fungal RIPs were predicted as secreted proteins. RIPs were not detected in non-seed plants such as algae, bryophytes, and ferns. However, we found RIPs in some flowering and non-flowering seed plants. The existence of plant RIPs might be related to the structure of seeds or fruits, which might be associated with whether seeds are easy to survive and spread. The evolutionary characteristics of RIPs were different between dicotyledons and monocotyledons. In addition, we also found that RIP2 genes might emerge very early and be plant-specific. Some plant RIP1 genes might evolve from RIP2 genes. This study provides new insights into the evolution of RIPs.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China; ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Jianfeng Lou
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Danqing Yao
- ShanghaiMunicipal Agricultural Technology Extension & service Center, Shanghai 201103, PR China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| |
Collapse
|
7
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550663. [PMID: 37546902 PMCID: PMC10402080 DOI: 10.1101/2023.07.26.550663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mosquitoes are prolific vectors of human pathogens; a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster , is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae ( s.l. ) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti , however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
|
8
|
Lapadula WJ, Juri Ayub M. Ribosome Inactivating Proteins in Insects: HGT, gene expression, and functional implications. Gene 2023:147547. [PMID: 37286020 DOI: 10.1016/j.gene.2023.147547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that depurinate an adenine residue in the conserved alpha-sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. Previously, we reported the existence of these toxins in insects, whose presence is restricted to mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti) and whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci). Both groups of genes are derived from two independent horizontal gene transfer (HGT) events and are evolved under purifying selection. Here, we report and characterize the occurrence of a third HGT event in the Sciaroidea superfamily, which supports the recurrent acquisition of RIP genes by insects. Transcriptomic experiments, available in databases, allowed us to describe the temporal and spatial expression profiles for these foreign genes in these organisms. Furthermore, we found that RIP expression is induced after infection with pathogens and provided, for the first time, transcriptomic evidence of parasite SRL depurination. This evidence suggests a possible role of these foreign genes as immune effectors in insects.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina
| |
Collapse
|
9
|
Dougherty K, Hudak KA. Phylogeny and domain architecture of plant ribosome inactivating proteins. PHYTOCHEMISTRY 2022; 202:113337. [PMID: 35934106 DOI: 10.1016/j.phytochem.2022.113337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Ribosome inactivating proteins (RIPs) are rRNA N-glycosylases (EC 3.2.2.22) best known for hydrolyzing an adenine base from the conserved sarcin/ricin loop of ribosomal RNA. Protein translation is inhibited by ribosome depurination; therefore, RIPs are generally considered toxic to cells. The expression of some RIPs is upregulated by biotic and abiotic stress, though the connection between RNA depurination and defense response is not well understood. Despite their prevalence in approximately one-third of flowering plant orders, our knowledge of RIPs stems primarily from biochemical analyses of individuals or genomics-scale analyses of small datasets from a limited number of species. Here, we performed an unbiased search for proteins with RIP domains and identified several-fold more RIPs than previously known - more than 800 from 120 species, many with novel associated domains and physicochemical characteristics. Based on protein domain configuration, we established 15 distinct groups, suggesting diverse functionality. Surprisingly, most of these RIPs lacked a signal peptide, indicating they may be localized to the nucleocytoplasm of cells, raising questions regarding their toxicity against conspecific ribosomes. Our phylogenetic analysis significantly extends previous models for RIP evolution in plants, predicting an original single-domain RIP that later evolved to acquire a signal peptide and different protein domains. We show that RIPs are distributed throughout 21 plant orders with many species maintaining genes for more than one RIP group. Our analyses provide the foundation for further characterization of these new RIP types, to understand how these enzymes function in plants.
Collapse
Affiliation(s)
- Kyra Dougherty
- Department of Biology, York University, Toronto, Canada.
| | | |
Collapse
|
10
|
Mishra V, Mishra R, Shamra RS. Ribosome inactivating proteins - An unfathomed biomolecule for developing multi-stress tolerant transgenic plants. Int J Biol Macromol 2022; 210:107-122. [PMID: 35525494 DOI: 10.1016/j.ijbiomac.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022]
Abstract
Transgenic crops would serve as a tool to overcome the forthcoming crisis in food security and environmental safety posed by degrading land and changing global climate. Commercial transgenic crops developed so far focus on single stress; however, sustaining crop yield to ensure food security requires transgenics tolerant to multiple environmental stresses. Here we argue and demonstrate the untapped potential of ribosome inactivating proteins (RIPs), translation inhibitors, as potential transgenes in developing transgenics to combat multiple stresses in the environment. Plant RIPs target the fundamental processes of the cell with very high specificity to the infecting pests. While controlling pathogens, RIPs also cause ectopic expression of pathogenesis-related proteins and trigger systemic acquired resistance. On the other hand, during abiotic stress, RIPs show antioxidant activity and trigger both enzyme-dependent and enzyme-independent metabolic pathways, alleviating abiotic stress such as drought, salinity, temperature, etc. RIPs express in response to specific environmental signals; therefore, their expression obviates additional physiological load on the transgenic plants instead of the constitutive expression. Based on evidence from its biological significance, ecological roles, laboratory- and controlled-environment success of its transgenics, and ethical merits, we unravel the potential of RIPs in developing transgenic plants showing co-tolerance to multiple environmental stresses.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India.
| | - Ruchi Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Jesus and Mary College, University of Delhi, Chanakyapuri, Delhi 110021, India.
| | - Radhey Shyam Shamra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Zuppone S, Assalini C, Minici C, Botrugno OA, Curnis F, Degano M, Corti A, Montorsi F, Salonia A, Vago R. A Novel RGD-4C-Saporin Conjugate Inhibits Tumor Growth in Mouse Models of Bladder Cancer. Front Oncol 2022; 12:846958. [PMID: 35480108 PMCID: PMC9035931 DOI: 10.3389/fonc.2022.846958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Although toxin may have some advantages compared to chemotherapeutic drugs in cancer therapy, e.g. a potent cytotoxic activity and a reduced risk of resistance, their successful application in the treatments to solid tumors still remains to be fully demonstrated. In this study, we genetically modified the structure of the plant-derived single-chain ribosome inactivating protein saporin (SAP) by fusing its N-terminus to the ACDCRGDCFCG peptide (RGD-4C), an αv-integrin ligand, and explored the anti-tumor activity of the resulting protein (called RGD-SAP) in vitro and in vivo, using a model of muscle invasive bladder cancer. We found that the RGD-4C targeting domain enhances the cytotoxic activity of SAP against various tumor cell lines, in a manner dependent on αv-integrin expression levels. In a subcutaneous syngeneic model of bladder cancer, RGD-SAP significantly reduced tumor growth in a dose-dependent manner. Furthermore, systemic administration of RGD-SAP in combination with mitomycin C, a chemotherapeutic drug currently used to treat patients with bladder cancer, increased the survival of mice bearing orthotopic bladder cancer with no evidence of systemic toxicity. Overall, the results suggest that RGD-SAP represents an efficient drug that could be exploited, either alone or in combination with the state-of-the-art therapies, for the treatment of bladder cancer and, potentially, of other solid tumors.
Collapse
Affiliation(s)
- Stefania Zuppone
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Assalini
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Claudia Minici
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Montorsi
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
- *Correspondence: Riccardo Vago,
| |
Collapse
|
12
|
Lu JQ, Shi WW, Xiao MJ, Tang YS, Zheng YT, Shaw PC. Lyophyllin, a Mushroom Protein from the Peptidase M35 Superfamily Is an RNA N-Glycosidase. Int J Mol Sci 2021; 22:ijms222111598. [PMID: 34769028 PMCID: PMC8584072 DOI: 10.3390/ijms222111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Wei Shi
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China;
| | - Meng-Jie Xiao
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High Level Biosafety Research Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
13
|
Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells. Toxins (Basel) 2021; 13:toxins13100684. [PMID: 34678977 PMCID: PMC8537469 DOI: 10.3390/toxins13100684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblastoma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients’ gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), currently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells’ growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs.
Collapse
|
14
|
Beauveria bassiana Ribotoxin (BbRib) Induces Silkworm Cell Apoptosis via Activating Ros Stress Response. Processes (Basel) 2021. [DOI: 10.3390/pr9081470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The BbRib gene participates in the infection process of Beauveria bassiana (B. bassiana). It also helps pathogenic fungi to escape and defeat the insect host immune defense system by regulating the innate immune response. However, model insects are rarely used to study the mechanism of fungal ribosomal toxin protein. In this study, BbRib protein was produced by prokaryotic expression and injected into silkworm (Bombyx mori) larvae. The physiological and biochemical indexes of silkworm were monitored, and the pathological effects of BbRib protein on immune tissues of silkworm were examined by Hematoxylin and Eosin (HE) staining. BbRib protein can significantly affect the growth and development of the silkworm, causing poisoning, destroying the midgut and fat body and producing physiological changes. The ROS stress response in the adipose tissue and cells of the silkworm was activated to induce apoptosis. These results indicated that the BbRib gene not only participates in the infection process of B. bassiana, it also helps the pathogenic fungi escape the immune system by regulating the innate immune system of the silkworm, allowing it to break through the silkworm’s immune defense. This study reveals the potential molecular mechanism of BbRib protein to insect toxicity, and provides a theoretical basis and material basis for the development and use of novel insecticidal toxins.
Collapse
|
15
|
Ribosome-Inactivating Proteins of Bougainvillea glabra Uncovered Polymorphism and Active Site Divergence. Toxins (Basel) 2021; 13:toxins13050331. [PMID: 34064406 PMCID: PMC8147849 DOI: 10.3390/toxins13050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins that can inhibit protein synthesis. RIPs purified from Bougainvillea have low nonspecific toxicity, showing promise for processing applications in the agricultural and medical fields. However, systematic research on the polymorphism of Bougainvillea RIPs is lacking, and it is worth exploring whether different isoforms differ in their active characteristics. The transcriptional and translational expression of type I RIPs in Bougainvillea glabra leaves was investigated in this study. Seven RIPs exhibited seasonal variation at both the mRNA and protein levels. The isoforms BI4 and BI6 showed the highest transcriptional expression in both the summer and autumn samples. Interestingly, BI6 was not detected in the protein level in any of the samples. However, the bioinformatics analysis showed that RIPs derived from the same species were gathered in a different cluster, and that the active sites changed among the isoforms during evolution. The significant discrepancy in Bougainvillea RIPs mainly locates at both termini of the amino acid sequence, particularly at the C terminus. Post-translational modifications may also exist in Bougainvillea RIPs. It is concluded that the reason for the polymorphism of Bougainvillea RIPs may be that these proteins are encoded by multiple genes due to genetic processes such as gene duplication and mutation. According to the results of sequence analysis, the possible functional differences of B. glabra RIP isoforms are discussed with regard to the observed discrepancy in both active sites and structures.
Collapse
|
16
|
Landi N, Ruocco MR, Ragucci S, Aliotta F, Nasso R, Pedone PV, Di Maro A. Quinoa as source of type 1 ribosome inactivating proteins: A novel knowledge for a revision of its consumption. Food Chem 2020; 342:128337. [PMID: 33077288 DOI: 10.1016/j.foodchem.2020.128337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022]
Abstract
This study investigates on the presence of toxic proteins in quinoa seeds. To this aim, a plethora of biochemical approaches were adopted for the purification and characterization of quinoin, a type 1 ribosome-inactivating protein (RIP) contained in quinoa seeds. We determined its melting temperature (68.2 ± 0.6 °C) and thermostability (loss of activity after 10-min incubation at 70 °C). Considering that quinoa seeds are used as a food, we found that quinoin is cytotoxic against BJ-5ta (human fibroblasts) and HaCaT (human keratinocytes) in a dose- and time-dependent manner. Moreover, in an in vitro digestive pepsin-trypsin treatment, 30% of quinoin is resistant to enzymatic cleavage. This toxin was found in seeds (0.23 mg/g of seeds) and in sprouted seeds obtained after 24-h (0.12 mg/g of sprout) and 48-h (0.09 mg/g of sprout). We suggest a thermal treatment of quinoa seeds before consumption in order to inactivate the toxin, particularly in sprouts, generally consumed raw.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Via F. Acton 38, 80133 Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
17
|
Whitefly genomes contain ribotoxin coding genes acquired from plants. Sci Rep 2020; 10:15503. [PMID: 32968092 PMCID: PMC7511414 DOI: 10.1038/s41598-020-72267-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and bacteria. Previously, we have described for the first time RIP genes in mosquitoes belonging to the Culicidae family. We showed that these genes are derived from a single event of horizontal gene transfer (HGT) from a prokaryotic donor. Mosquito RIP genes are evolving under purifying selection, strongly suggesting that these toxins have acquired a functional role. In this work, we show the existence of two RIP encoding genes in the genome of the whitefly Bemisia tabaci, a hemiptera species belonging to the Aleyrodidae family distantly related to mosquitoes. Contamination artifacts were ruled out analyzing three independent B. tabaci genome databases. In contrast to mosquito RIPs, whitefly genes harbor introns and according to transcriptomic evidence are transcribed and spliced. Phylogeny and the taxonomic distribution strongly support that whitefly RIP genes are derived from an independent HGT event from a plant source. These results, along with our previous description of RIPs in Diptera, suggest that the acquired genes are functional in these insects and confer some fitness advantage.
Collapse
|
18
|
Antiviral Activity of PD-L1 and PD-L4, Type 1 Ribosome Inactivating Proteins from Leaves of Phytolacca dioica L. in the Pathosystem Phaseolus vulgaris-Tobacco Necrosis Virus (TNV). Toxins (Basel) 2020; 12:toxins12080524. [PMID: 32824023 PMCID: PMC7472211 DOI: 10.3390/toxins12080524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Using the pathosystem Phaseolus vulgaris-tobacco necrosis virus (TNV), we demonstrated that PD-L1 and PD-L4, type-1 ribosome inactivating proteins (RIPs) from leaves of Phytolacca dioica L., possess a strong antiviral activity. This activity was exerted both when the RIPs and the virus were inoculated together in the same leaf and when they were inoculated or applied separately in the adaxial and abaxial leaf surfaces. This suggests that virus inhibition would mainly occur inside plant cells at the onset of infection. Histochemical studies showed that both PD-L1 and PD-L4 were not able to induce oxidative burst and cell death in treated leaves, which were instead elicited by inoculation of the virus alone. Furthermore, when RIPs and TNV were inoculated together, no sign of H2O2 deposits and cell death were detectable, indicating that the virus could have been inactivated in a very early stage of infection, before the elicitation of a hypersensitivity reaction. In conclusion, the strong antiviral activity is likely exerted inside host cells as soon the virus disassembles to start translation of the viral genome. This activity is likely directed towards both viral and ribosomal RNA, explaining the almost complete abolition of infection when virus and RIP enter together into the cells.
Collapse
|
19
|
Lapadula WJ, Marcet PL, Taracena ML, Lenhart A, Juri Ayub M. Characterization of horizontally acquired ribotoxin encoding genes and their transcripts in Aedes aegypti. Gene 2020; 754:144857. [PMID: 32512159 DOI: 10.1016/j.gene.2020.144857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Ribosome Inactivating Proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of the 28S rRNA. The occurrence of RIP genes has been described in a wide range of plant taxa, as well as in several species of bacteria and fungi. A remarkable case is the presence of these genes in metazoans belonging to the Culicinae subfamily. We reported that these genes are derived from a single horizontal gene transfer event, most likely from a bacterial donor species. Moreover, we have shown evidence that mosquito RIP genes are evolving under purifying selection, suggesting that these toxins have acquired a functional role in these organisms. In the present work, we characterized the intra-specific sequence variability of Aedes aegypti RIP genes (RIPAe1, RIPAe2, and RIPAe3) and tested their expression at the mRNA level. Our results show that RIPAe2 and RIPAe3 are transcribed and polyadenylated, and their expression levels are modulated across the developmental stages. Varibility among genes was observed, including the existence of null alleles for RIPAe1 and RIPAe2, with variants showing partial deletions. These results further support the existence of a physiological function for these foreign genes in mosquitoes. The possible nature of this functionality is discussed.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina
| | - Paula L Marcet
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA.
| | - Mabel L Taracena
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Audrey Lenhart
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina.
| |
Collapse
|
20
|
Szajwaj M, Wawiórka L, Molestak E, Michalec-Wawiórka B, Mołoń M, Wojda I, Tchórzewski M. The influence of ricin-mediated rRNA depurination on the translational machinery in vivo - New insight into ricin toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118554. [DOI: 10.1016/j.bbamcr.2019.118554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 11/29/2022]
|
21
|
Reconstructing the evolutionary history of F 420-dependent dehydrogenases. Sci Rep 2018; 8:17571. [PMID: 30514849 PMCID: PMC6279831 DOI: 10.1038/s41598-018-35590-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
During the last decade the number of characterized F420-dependent enzymes has significantly increased. Many of these deazaflavoproteins share a TIM-barrel fold and are structurally related to FMN-dependent luciferases and monooxygenases. In this work, we traced the origin and evolutionary history of the F420-dependent enzymes within the luciferase-like superfamily. By a thorough phylogenetic analysis we inferred that the F420-dependent enzymes emerged from a FMN-dependent common ancestor. Furthermore, the data show that during evolution, the family of deazaflavoproteins split into two well-defined groups of enzymes: the F420-dependent dehydrogenases and the F420-dependent reductases. By such event, the dehydrogenases specialized in generating the reduced deazaflavin cofactor, while the reductases employ the reduced F420 for catalysis. Particularly, we focused on investigating the dehydrogenase subfamily and demonstrated that this group diversified into three types of dehydrogenases: the already known F420-dependent glucose-6-phosphate dehydrogenases, the F420-dependent alcohol dehydrogenases, and the sugar-6-phosphate dehydrogenases that were identified in this study. By reconstructing and experimentally characterizing ancestral and extant representatives of F420-dependent dehydrogenases, their biochemical properties were investigated and compared. We propose an evolutionary path for the emergence and diversification of the TIM-barrel fold F420-dependent dehydrogenases subfamily.
Collapse
|
22
|
Evolution of STEC virulence: Insights from the antipredator activities of Shiga toxin producing E. coli. Int J Med Microbiol 2018; 308:956-961. [DOI: 10.1016/j.ijmm.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
|
23
|
Zhou Y, Li XP, Kahn JN, Tumer NE. Functional Assays for Measuring the Catalytic Activity of Ribosome Inactivating Proteins. Toxins (Basel) 2018; 10:toxins10060240. [PMID: 29899209 PMCID: PMC6024586 DOI: 10.3390/toxins10060240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to determine the enzyme activity of RIPs. Rapid and sensitive methods to measure the depurination activity of RIPs are critical for assessing their reaction mechanism, enzymatic properties, interaction with ribosomal proteins, ribotoxic stress signaling, in the search for inhibitors and in the detection and diagnosis of enteric infections. Here, we review the major assays developed for measuring the catalytic activity of RIPs, discuss their advantages and disadvantages and explain how they are used in understanding the catalytic mechanism, ribosome specificity, and dynamic enzymatic features of RIPs.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Xiao-Ping Li
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Jennifer N Kahn
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|