1
|
Gao L, Nowakowska MB, Selby K, Przykopanski A, Chen B, Krüger M, Douillard FP, Lam KH, Chen P, Huang T, Minton NP, Dorner MB, Dorner BG, Rummel A, Lindström M, Jin R. Botulinum neurotoxins exploit host digestive proteases to boost their oral toxicity via activating OrfXs/P47. Nat Struct Mol Biol 2025:10.1038/s41594-024-01479-0. [PMID: 39838108 DOI: 10.1038/s41594-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Botulinum neurotoxins (BoNTs) rank among the most potent toxins and many of them are produced by bacteria carrying the orfX gene cluster that also encodes four nontoxic proteins (OrfX1, OrfX2, OrfX3 and P47). The orfX gene cluster is also found in the genomes of many non-BoNT-producing bacteria, often alongside genes encoding oral insecticidal toxins. However, the functions of these OrfXs and P47 remain elusive. Here, we demonstrate that the combined action of all four components (OrfXs and P47) drastically boosts the oral toxicity of BoNT in mice, following proteolytic activation by digestive proteases that oral toxins regularly confront. In particular, OrfX2 adopts a self-inhibiting state, engaging with BoNT through another clostridial protein, nontoxic non-hemagglutinin (NTNH), only after proteolytic activation. Cryo-electron microscopy studies unveil that two molecules of protease-activated OrfX2 simultaneously associate with NTNH, a binding mode crucial for boosting BoNT oral toxicity. Collectively, these studies offer novel insights into the physiological functions and regulatory mechanisms of OrfXs and P47 of BoNTs, shedding light on the pathogenesis of other bacterial toxins associated with homologous OrfXs and P47.
Collapse
Affiliation(s)
- Linfeng Gao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maria Barbara Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - François Paul Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ting Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Nigel Peter Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Martin Bernhard Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte Gertrud Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Rummel
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Košenina S, Škerlová J, Zhang S, Dong M, Stenmark P. The cryo-EM structure of the BoNT/Wo-NTNH complex reveals two immunoglobulin-like domains. FEBS J 2024; 291:676-689. [PMID: 37746829 DOI: 10.1111/febs.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.
Collapse
Affiliation(s)
- Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
3
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
4
|
Košenina S, Stenmark P. Crystal structure of the OrfX1-OrfX3 complex from the PMP1 neurotoxin gene cluster. FEBS Lett 2023; 597:515-523. [PMID: 36403098 DOI: 10.1002/1873-3468.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Paraclostridial mosquitocidal protein 1 (PMP1) is a member of the clostridial neurotoxin (CNT) family, which includes botulinum and tetanus neurotoxins. PMP1 has unique selectivity for anopheline mosquitos and is the only known member of the family that targets insects. PMP1 is encoded in an orfX gene cluster, which in addition to the toxin, consists of OrfX1, OrfX2, OrfX3, P47 and NTNH, which have been shown to aid in PMP1 toxicity. We here show that OrfX1 and OrfX3 form a complex and present its structure at 2.7 Å. The OrfX1-OrfX3 complex mimics the structure of full-length OrfX2 and belongs to the lipid-binding TULIP protein superfamily. With this report, the structures of all proteins encoded in the orfX gene cluster of CNTs are now determined.
Collapse
Affiliation(s)
- Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
5
|
Gao L, Lam KH, Liu S, Przykopanski A, Lübke J, Qi R, Krüger M, Nowakowska MB, Selby K, Douillard FP, Dorner MB, Perry K, Lindström M, Dorner BG, Rummel A, Jin R. Crystal structures of OrfX1, OrfX2 and the OrfX1-OrfX3 complex from the orfX gene cluster of botulinum neurotoxin E1. FEBS Lett 2023; 597:524-537. [PMID: 36653893 PMCID: PMC10019085 DOI: 10.1002/1873-3468.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023]
Abstract
Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.
Collapse
Affiliation(s)
- Linfeng Gao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Shun Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johanna Lübke
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ruifeng Qi
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - François P. Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
7
|
Smith TJ, Williamson CHD, Hill KK, Johnson SL, Xie G, Anniballi F, Auricchio B, Fernández RA, Caballero PA, Keim P, Sahl JW. The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type A and F Gene Clusters Is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Front Microbiol 2021; 12:566908. [PMID: 33716993 PMCID: PMC7952441 DOI: 10.3389/fmicb.2021.566908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Charles H D Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Karen K Hill
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Fabrizio Anniballi
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Auricchio
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia A Caballero
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
8
|
Subtractive proteomics and systems biology analysis revealed novel drug targets in Mycoplasma genitalium strain G37. Microb Pathog 2020; 145:104231. [DOI: 10.1016/j.micpath.2020.104231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
|
9
|
Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, Marcellin E. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update. Genome Biol Evol 2020; 11:2035-2044. [PMID: 31076745 PMCID: PMC6656338 DOI: 10.1093/gbe/evz096] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.,Joint BioEnergy Institute, Emeryville, CA
| | - Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | | | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
10
|
Looking for the X Factor in Bacterial Pathogenesis: Association of orfX- p47 Gene Clusters with Toxin Genes in Clostridial and Non-Clostridial Bacterial Species. Toxins (Basel) 2019; 12:toxins12010019. [PMID: 31906154 PMCID: PMC7020563 DOI: 10.3390/toxins12010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.
Collapse
|
11
|
Levine TP. Remote homology searches identify bacterial homologues of eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and AsmA and Mdm31p. BMC Mol Cell Biol 2019; 20:43. [PMID: 31607262 PMCID: PMC6791001 DOI: 10.1186/s12860-019-0226-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background All cells rely on lipids for key functions. Lipid transfer proteins allow lipids to exit the hydrophobic environment of bilayers, and cross aqueous spaces. One lipid transfer domain fold present in almost all eukaryotes is the TUbular LIPid binding (TULIP) domain. Three TULIP families have been identified in bacteria (P47, OrfX2 and YceB), but their homology to eukaryotic proteins is too low to specify a common origin. Another recently described eukaryotic lipid transfer domain in VPS13 and ATG2 is Chorein-N, which has no known bacterial homologues. There has been no systematic search for bacterial TULIPs or Chorein-N domains. Results Remote homology predictions for bacterial TULIP domains using HHsearch identified four new TULIP domains in three bacterial families. DUF4403 is a full length pseudo-dimeric TULIP with a 6 strand β-meander dimer interface like eukaryotic TULIPs. A similar sheet is also present in YceB, suggesting it homo-dimerizes. TULIP domains were also found in DUF2140 and in the C-terminus DUF2993. Remote homology predictions for bacterial Chorein-N domains identified strong hits in the N-termini of AsmA and TamB in diderm bacteria, which are related to Mdm31p in eukaryotic mitochondria. The N-terminus of DUF2993 has a Chorein-N domain adjacent to its TULIP domain. Conclusions TULIP lipid transfer domains are widespread in bacteria. Chorein-N domains are also found in bacteria, at the N-terminus of multiple proteins in the intermembrane space of diderms (AsmA, TamB and their relatives) and in Mdm31p, a protein that is likely to have evolved from an AsmA/TamB-like protein in the endosymbiotic mitochondrial ancestor. This indicates that both TULIP and Chorein-N lipid transfer domains may have originated in bacteria.
Collapse
Affiliation(s)
- Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
12
|
Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P, Gill SS. A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 2019; 10:2869. [PMID: 31253776 PMCID: PMC6599013 DOI: 10.1038/s41467-019-10732-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control. So far identified clostridial neurotoxins target vertebrates. Here, Contreras et al. isolate the clostridial-like neurotoxin PMP1 from Paraclostridium bifermentans strains and show that it selectively targets anopheline mosquitoes by targeting mosquito syntaxin.
Collapse
Affiliation(s)
- Estefania Contreras
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Nadia Qureshi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Swati Chawla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Harpal S Dhillon
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Han Lim Lee
- Unit of Medical Entomology, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Jianwu Chen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Experimental Medical Science, Lund University, Lund, 22100, Sweden.
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth. mSystems 2019; 4:mSystems00299-18. [PMID: 31058231 PMCID: PMC6495232 DOI: 10.1128/msystems.00299-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments. Clostridium butyricum, the type species of the genus Clostridium, is considered an obligate anaerobe, yet it has been shown to grow in the presence of oxygen. C. butyricum strains atypically producing the botulinum neurotoxin type E are the leading cause of type E human botulism in Italy. Here, we show that type E botulinum neurotoxin-producing C. butyricum strains growing exponentially were able to keep growing and producing toxin in vitro upon exposure to air, although less efficiently than under ideal oxygen-depleted conditions. Bacterial growth in air was maintained when the initial cell density was higher than 103 cells/ml. No spores were detected in the cultures aerated for 5 h. To understand the biological mechanisms allowing the adaptation of vegetative cells of C. butyricum type E to oxygen, we compared the proteome and metabolome profiles of the clostridial cultures grown for 5 h under either aerated or anaerobic conditions. The results indicated that bacterial cells responded to oxygen stress by slowing growth and modulating the expression of proteins involved in carbohydrate uptake and metabolism, redox homeostasis, DNA damage response, and bacterial motility. Moreover, the ratio of acetate to butyrate was significantly higher under aeration. This study demonstrates for the first time that a botulinum neurotoxin-producing Clostridium can withstand oxygen during vegetative growth. IMPORTANCE Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments.
Collapse
|
14
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
16
|
Benoit RM. Botulinum Neurotoxin Diversity from a Gene-Centered View. Toxins (Basel) 2018; 10:E310. [PMID: 30071587 PMCID: PMC6115791 DOI: 10.3390/toxins10080310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) rank amongst the most potent toxins known. The factors responsible for the emergence of the many known and yet unknown BoNT variants remain elusive. It also remains unclear why anaerobic bacteria that are widely distributed in our environment and normally do not pose a threat to humans, produce such deadly toxins. Even the possibility of accidental toxicity to humans has not been excluded. Here, I review the notion that BoNTs may have specifically evolved to target vertebrates. Considering the extremely complex molecular architecture of the toxins, which enables them to reach the bloodstream, to recognize and enter neurons, and to block neurotransmitter release, it seems highly unlikely that BoNT toxicity to vertebrates is a coincidence. The carcass⁻maggot cycle provides a plausible explanation for a natural role of the toxins: to enable mass reproduction of bacteria, spores, and toxins, using toxin-unaffected invertebrates, such as fly maggots, as the vectors. There is no clear correlation between toxigenicity and a selective advantage of clostridia in their natural habitat. Possibly, non-toxigenic strains profit from carcasses resulting from the action of toxigenic strains. Alternatively, a gene-centered view of toxin evolution would also explain this observation. Toxin-coding mobile genetic elements may have evolved as selfish genes, promoting their own propagation, similar to commensal viruses, using clostridia and other bacteria as the host. Research addressing the role of BoNTs in nature and the origin of toxin variability goes hand in hand with the identification of new toxin variants and the design of improved toxin variants for medical applications. These research directions may also reveal yet unknown natural antidotes against these extremely potent neurotoxins.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen CH-5232, Switzerland.
| |
Collapse
|