1
|
Charla R, Patil PP, Patil VS, Bhandare VV, Karoshi V, Balaganur V, Joshi RK, Harish DR, Roy S. Anti-Cholera toxin activity of selected polyphenols from Careya arborea, Punica granatum, and Psidium guajava. Front Cell Infect Microbiol 2023; 13:1106293. [PMID: 37113136 PMCID: PMC10126245 DOI: 10.3389/fcimb.2023.1106293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/28/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Careya arborea, Punica granatum, and Psidium guajava are traditionally used to treat diarrheal diseases in India and were reported to show anti-Cholera toxin activity from our earlier studies. As polyphenols are reported to neutralize Cholera toxin (CT), the present study investigated the inhibitory activity of selected polyphenols from these plants against CTB binding to GM1 receptor using in silico, in vitro, and in vivo approaches. Methods Molecular modelling approach was used to investigate the intermolecular interactions of selected 20 polyphenolic compounds from three plants with CT using DOCK6. Based on intermolecular interactions, two phenolic acids, Ellagic acid (EA) and Chlorogenic acid (CHL); two flavonoids, Rutin (RTN) and Phloridzin (PHD) were selected along with their respective standards, Gallic acid (GA) and Quercetrin (QRTN). The stability of docked complexes was corroborated using molecular dynamics simulation. Furthermore, in vitro inhibitory activity of six compounds against CT was assessed using GM1 ELISA and cAMP assay. EA and CHL that showed prominent activity against CT in in vitro assays were investigated for their neutralizing activity against CT-induced fluid accumulation and histopathological changes in adult mouse. Results and discussion The molecular modelling study revealed significant structural stability of the CT-EA, CT-CHL, and CT-PHD complexes compared to their respective controls. All the selected six compounds significantly reduced CT-induced cAMP levels, whereas EA, CHL, and PHD exhibited > 50% binding inhibition of CT to GM1. The EA and CHL that showed prominent neutralization activity against CT from in vitro studies, also significantly decreased CT-induced fluid accumulation and histopathological changes in adult mouse. Our study identified bioactive compounds from these three plants against CT-induced diarrhea.
Collapse
Affiliation(s)
- Rajitha Charla
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Priyanka P. Patil
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Vishal S. Patil
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Vishwambhar V. Bhandare
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Microbiology, Shivaji University, Kolhapur, India
| | - Veeresh Karoshi
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Venkanna Balaganur
- Indian Council of Agricultural Research – Krishi Vigyan Kendra, Bagalkot, Karnataka, India
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Rajesh K. Joshi
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Darasaguppe R. Harish
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- *Correspondence: Darasaguppe R. Harish, ; Subarna Roy,
| | - Subarna Roy
- Indian Council of Medical Research - National Institute of Traditional Medicine, Belagavi, Karnataka, India
- *Correspondence: Darasaguppe R. Harish, ; Subarna Roy,
| |
Collapse
|
2
|
Larsen A, John L, Sansom M, Corey R. Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us? Biosci Rep 2022; 42:BSR20211406. [PMID: 35297484 PMCID: PMC9008707 DOI: 10.1042/bsr20211406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral membrane proteins (PMPs) can reversibly and specifically bind to biological membranes to carry out functions such as cell signalling, enzymatic activity, or membrane remodelling. Structures of these proteins and of their lipid-binding domains are typically solved in a soluble form, sometimes with a lipid or lipid headgroup at the binding site. To provide a detailed molecular view of PMP interactions with the membrane, computational methods such as molecular dynamics (MD) simulations can be applied. Here, we outline recent attempts to characterise these binding interactions, focusing on both intracellular proteins, such as phosphatidylinositol phosphate (PIP)-binding domains, and extracellular proteins such as glycolipid-binding bacterial exotoxins. We compare methods used to identify and analyse lipid-binding sites from simulation data and highlight recent work characterising the energetics of these interactions using free energy calculations. We describe how improvements in methodologies and computing power will help MD simulations to continue to contribute to this field in the future.
Collapse
Affiliation(s)
| | - Laura H. John
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | | | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford, U.K
| |
Collapse
|
3
|
Sovrlić M, Mrkalić E, Jelić R, Ćendić Serafinović M, Stojanović S, Prodanović N, Tomović J. Effect of Caffeine and Flavonoids on the Binding of Tigecycline to Human Serum Albumin: A Spectroscopic Study and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:266. [PMID: 35337065 PMCID: PMC8951011 DOI: 10.3390/ph15030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Human serum albumin (HSA) has a very significant role in the transport of drugs, in their pharmacokinetic and pharmacodynamic properties, as well as the unbound concentration of drugs in circulating plasma. The aim of this study was to look into the competition between tigecycline (TGC) and alkaloid (ALK) (caffeine (CAF)), and flavonoids (FLAVs) (catechin (CAT), quercetin (QUE), and diosmin (DIO)) in binding to HSA in simulated physiological conditions using multiple spectroscopic measurements and docking simulations. Fluorescence analysis was used to find the binding and quenching properties of double HSA-TGC and triple HSA-TGC-CAF/FLAV systems. The conformational change of the HSA was analyzed using synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy, and circular dichroism. Obtained results of spectroscopic analyses indicate that triple complexes of HSA-TGC-CAF/FLAVs are formed without problems and have higher binding affinities than double HSA-TGC. In addition, TGC does not change the microenvironments around the tryptophan (Trp) and tyrosine (Tyr) residues in the presence of ALK and FLAVs. Ultimately, the binding affinity, competition, and interaction nature were explored by docking modeling. Computational outcomes are in good accordance with experimentally obtained results. Accordingly, concluding remarks may be very useful for potential interactions between common food components and drugs.
Collapse
Affiliation(s)
- Miroslav Sovrlić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Emina Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ratomir Jelić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Marina Ćendić Serafinović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Stefan Stojanović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Nevena Prodanović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Jovica Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| |
Collapse
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|