1
|
Wang Y, Sun S, Zhai J, Liu Y, Song C, Sun C, Li Q, Liu J, Jiang H, Liu Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp Brain Res 2023; 241:2817-2827. [PMID: 37882882 DOI: 10.1007/s00221-023-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, chronic, progressive, and fatal neurodegenerative disease that leads to progressive atrophy and weakness of the muscles throughout the body. Herein, we found that the intrathecal injection of adeno-associated virus (AAV)-delivered VEGF in SOD1-G93A transgenic mice, as well as ALS mice, could significantly delay disease onset and preserve motor functions and neurological functions, thus prolonging the survival of mice models. Moreover, we found that VEGF treatment could induce the elevated expression of aromatase, which is a key enzyme in estrogen synthesis, in neurons but not in astrocytes. On the other hand, the changes in the expression of oxidative stress-related factors HO-1 and GCLM and autophagy-related proteins p62 and LC3II upon the administration of VEGF revealed the involvement of oxidative stress and autophagy underlying the downstream of the VEGF-induced mitigation of ALS. In conclusion, this study proved the protective effects of VEGF in the onset and development of ALS and revealed the involvement of estrogen, oxidative stress and autophagy in the VEGF-induced alleviation of ALS. Our results highlighted the potential of VEGF as a promising therapeutic agent in the treatment of ALS.
Collapse
Affiliation(s)
- Ying Wang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Shuo Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jingxu Zhai
- The Third Department of Pediatrics, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei, People's Republic of China
| | - Yuanyuan Liu
- General practice department, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, People's Republic of China
| | - Chaoyuan Song
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Cuimei Sun
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Qiang Li
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jianqiang Liu
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Hong Jiang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Caballero M, Barreto N, Bonfanti AP, Munhoz J, Rocha e Silva T, Sutti R, Verinaud L, Pinheiro de Mato FC, Lanfredi GP, Rapôso C. Isolated Components From Spider Venom Targeting Human Glioblastoma Cells and Its Potential Combined Therapy With Rapamycin. Front Mol Biosci 2022; 9:752668. [PMID: 35359607 PMCID: PMC8964069 DOI: 10.3389/fmolb.2022.752668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Glioblastomas (GBs) are responsible for a higher mortality rate among gliomas, corresponding to more than 50% of them and representing a challenge in terms of therapy and prognosis. Peptide-based antineoplastic therapy is a vast and promising field, and these molecules are one of the main classes present in spider venoms. Recently, our research group demonstrated the cytotoxic effects of Phoneutria nigriventer spider venom (PnV) in GBs. The present study aimed to select the purified PnV-components with potential antineoplastic effects, as well as to compare different metabolic conditions. Human GB (NG97) cells were treated with the PnV fractions: F1 (less than 3 kDa), F2 (between 3 and 10 kDa), and F3 (greater than 10 kDa). After treatments, viability (MTT), proliferation (CFSE), death (Annexin V/propidium iodide-PI), and cell cycle (PI) assays were performed. The F1 and F2 fractions in acute periods (1 and 5 h) and low concentrations (0.1 and 1 μg/ml) showed more relevant effects and were repurified in subfractions (SF1–SF11); from these, SF3 and SF4 showed the most significant effects. The previous inhibition of mTOR by rapamycin had a synergistic effect with SFs, reducing cell viability even more significantly than the untreated control. Taken together, the results point to components present in SF3 and SF4 as potential prototypes for the development of new drugs for GB treatment and stimulate studies to use these compounds in combination therapy with a rapamycin-like activity. Future studies will be conducted to characterize, synthesize the molecules, and to evaluate the efficacy and safety in preclinical models.
Collapse
Affiliation(s)
- Marcus Caballero
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Natalia Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Felipe Cezar Pinheiro de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Guilherme Pauperio Lanfredi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), São Paulo, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Catarina Rapôso,
| |
Collapse
|