1
|
Chaiyabutr N, Noiprom J, Promruangreang K, Vasaruchapong T, Laoungbua P, Khow O, Chanhome L, Sitprija V. Acute phase reactions in Daboia siamensis venom and fraction-induced acute kidney injury: the role of oxidative stress and inflammatory pathways in in vivo rabbit and ex vivo rabbit kidney models. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230070. [PMID: 38808074 PMCID: PMC11131233 DOI: 10.1590/1678-9199-jvatitd-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Background This study examines the direct nephrotoxic effects of Daboia siamensis venom (RVV) and venom fractions in in vivo and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure. Methods We administered RVV and its venom fractions (PLA2, MP, LAAO, and PDE) to rabbits in vivo and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation. Results In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FEMDA and decreases in FEGSH. The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased in vivo, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease in vivo but showed elevated levels in the IPK model. A single RVV injection in vivo disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio. Conclusion RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.
Collapse
Affiliation(s)
- Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| | - Jureeporn Noiprom
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanyanat Promruangreang
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Panithi Laoungbua
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Orawan Khow
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| |
Collapse
|
2
|
Thumtecho S, Suteparuk S, Sitprija V. Pulmonary involvement from animal toxins: the cellular mechanisms. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230026. [PMID: 37727535 PMCID: PMC10506740 DOI: 10.1590/1678-9199-jvatitd-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Venomous animals and their venom have always been of human interest because, despite species differences, coevolution has made them capable of targeting key physiological components of our bodies. Respiratory failure from lung injury is one of the serious consequences of envenomation, and the underlying mechanisms are rarely discussed. This review aims to demonstrate how toxins affect the pulmonary system through various biological pathways. Herein, we propose the common underlying cellular mechanisms of toxin-induced lung injury: interference with normal cell function and integrity, disruption of normal vascular function, and provocation of excessive inflammation. Viperid snakebites are the leading cause of envenomation-induced lung injury, followed by other terrestrial venomous animals such as scorpions, spiders, and centipedes. Marine species, particularly jellyfish, can also inflict such injury. Common pulmonary manifestations include pulmonary edema, pulmonary hemorrhage, and exudative infiltration. Severe envenomation can result in acute respiratory distress syndrome. Pulmonary involvement suggests severe envenomation, thus recognizing these mechanisms and manifestations can aid physicians in providing appropriate treatment.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Suchai Suteparuk
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute and King Chulalongkorn Memorial
Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
3
|
Barbosa AN, Ferreira RS, de Carvalho FCT, Schuelter-Trevisol F, Mendes MB, Mendonça BC, Batista JN, Trevisol DJ, Boyer L, Chippaux JP, Medolago NB, Cassaro CV, Carneiro MTR, de Oliveira APP, Pimenta DC, da Cunha LER, Dos Santos LD, Barraviera B. Single-Arm, Multicenter Phase I/II Clinical Trial for the Treatment of Envenomings by Massive Africanized Honey Bee Stings Using the Unique Apilic Antivenom. Front Immunol 2021; 12:653151. [PMID: 33841437 PMCID: PMC8025786 DOI: 10.3389/fimmu.2021.653151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
We evaluated the safety, optimal dose, and preliminary effectiveness of a new-approach Africanized honeybee (Apis mellifera) Antivenom (AAV) in a phase I/II, multicenter, non-randomized, single-arm clinical trial involving 20 participants with multiple stings. Participants received 2 to 10 vials of AAV depending on the number of stings they suffered, or a predefined adjuvant, symptomatic, and complementary treatment. The primary safety endpoint was the occurrence of early adverse reactions within the first 24 h of treatment. Preliminary efficacy based on clinical evolution, including laboratory findings, was assessed at baseline and at various time points over the four following weeks. ELISA assays and mass spectrometry were used to estimate venom pharmacokinetics before, during, and after treatment. Twenty adult participants, i.e., 13 (65%) men and 7 (35%) women, with a median age of 44 years and a mean body surface area of 1.92 m2 (median = 1.93 m2) were recruited. The number of stings ranged from 7 to > 2,000, with a median of 52.5. Symptoms of envenoming were classified as mild, moderate, or severe in 80% (16), 15% (3), and 5% (1) of patients, respectively; patients with mild, moderate, or severe envenoming received 2, 6, and 10 vials of AAV as per the protocol. None of the patients had late reactions (serum sickness) within 30 d of treatment. There was no discontinuation of the protocol due to adverse events, and there were no serious adverse events. One patient had a moderate adverse event, transient itchy skin, and erythroderma. All participants completed the intravenous antivenom infusion within 2 h, and there was no loss to follow-up after discharge. ELISA assays showed venom (melittin and PLA2) concentrations varying between 0.25 and 1.479 ng/mL prior to treatment. Venom levels decreased in all patients during the hospitalization period. Surprisingly, in nine cases (45%), despite clinical recovery and the absence of symptoms, venom levels increased again during outpatient care 10 d after discharge. Mass spectrometry showed melittin in eight participants, 30 d after treatment. Considering the promising safety results for this investigational product in the treatment of massive Africanized honeybee attack, and its efficacy, reflected in the clinical improvements and corresponding immediate decrease in blood venom levels, the AAV has shown to be safe for human use. Clinical Trial Registration: UTN: U1111-1160-7011, identifier [RBR-3fthf8].
Collapse
Affiliation(s)
- Alexandre Naime Barbosa
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, Brazil
| | - Rui Seabra Ferreira
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP) and Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Francilene Capel Tavares de Carvalho
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Fabiana Schuelter-Trevisol
- Clinical Research Center, Nossa Senhora da Conceição Hospital, Tubarão, Brazil.,Graduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Tubarão, Brazil
| | - Mônica Bannwart Mendes
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, Brazil
| | - Bruna Cavecci Mendonça
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - José Nixon Batista
- Clinical Research Center, Nossa Senhora da Conceição Hospital, Tubarão, Brazil
| | - Daisson José Trevisol
- Clinical Research Center, Nossa Senhora da Conceição Hospital, Tubarão, Brazil.,Graduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Tubarão, Brazil
| | - Leslie Boyer
- VIPER Institute, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Jean-Philippe Chippaux
- MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, France.,CRT, Institut Pasteur, Paris, France
| | - Natália Bronzatto Medolago
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Claudia Vilalva Cassaro
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Márcia Tonin Rigotto Carneiro
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Ana Paola Piloto de Oliveira
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Daniel Carvalho Pimenta
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Lucilene Delazari Dos Santos
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP) and Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| | - Benedito Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil.,Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP) and Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, Brazil
| |
Collapse
|
4
|
Abbade LPF, Barraviera SRCS, Silvares MRC, Lima ABBDCO, Haddad GR, Gatti MAN, Medolago NB, Rigotto Carneiro MT, dos Santos LD, Ferreira RS, Barraviera B. Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial. Front Immunol 2021; 12:627541. [PMID: 33708219 PMCID: PMC7940668 DOI: 10.3389/fimmu.2021.627541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Heterologous fibrin sealant (HFS) consists of a fibrinogen-rich cryoprecipitate extracted from Bubalus bubalis buffalo blood and a thrombin-like enzyme purified from Crotalus durissus terrificus snake venom. This study evaluated the safety and immunogenicity of HFS, estimated the best dose, and assessed its preliminary efficacy in the treatment of chronic venous ulcers (CVU). Methods A phase I/II non-randomized, single-arm clinical trial was performed on 31 participants, accounting for a total of 69 active CVUs. All ulcers were treated with HFS, essential fatty acid, and Unna boot for 12 weeks. The outcomes assessed were: (1) primary safety, immunogenicity analyses, and confirmation of the lowest safe dose; (2) secondary promising efficacy by analyzing the healing process. Immunogenicity was evaluated using the serum-neutralizing (IgM and IgG) and non-neutralizing (IgA and IgE) antibody techniques against the product. The immuno-detection of IgE class antibodies was assessed using dot-blot assay before and at the end of treatment. Positive samples on dot-blot assays were subsequently analyzed by western blotting to verify the results. Results No severe systemic adverse events related to the use of HFS were observed. Local adverse events potentially related to treatment include ulcer pain (52%), peri-ulcer maceration (16%), peri-ulcer pruritus (12%), critical colonization (8%), peri-ulcer eczema (4%), the opening of new ulcers (4%), and increased ulcerated area 4%). Neutralizing and non-neutralizing antibodies did not show significant deviations at any of the evaluated time points. Blot assays showed that all patients presented negative immunological reactions, either before or after treatment, with the thrombin-like enzyme component. In addition, two participants showed a positive immunological reaction to the cryoprecipitate component, while another two were positive before and during treatment. Regarding the secondary outcomes of preliminary efficacy, a total healing and significant reduction of the area was observed in 47.5 and 22%, respectively. A qualitative improvement was observed in the wound beds of unhealed ulcers. Conclusions The investigational HFS bioproduct proved to be safe and non-immunogenic with a good preliminary efficacy for the treatment of CVU, according to the protocol and doses proposed. A multicentric phase III clinical trial will be necessary to verify these findings.
Collapse
Affiliation(s)
- Luciana P. F. Abbade
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Nursing, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Silvia Regina Catharino Sartori Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Maria Regina Cavariani Silvares
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Ana Beatriz B. de C. O. Lima
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Gabriela R. Haddad
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Márcia A. N. Gatti
- Nursing School of Sagrado Coração University (UNISAGRADO), Bauru, Brazil
| | - Natália Bronzatto Medolago
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Márcia Tonin Rigotto Carneiro
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Lucilene Delazari dos Santos
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Benedito Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| |
Collapse
|