1
|
Guerrero M, Filho D, Ayala A N, Rafael D, Andrade F, Marican A, Vijayakumar S, Durán-Lara EF. Hydrogel-antimicrobial peptide association: A novel and promising strategy to combat resistant infections. Colloids Surf B Biointerfaces 2025; 247:114451. [PMID: 39693724 DOI: 10.1016/j.colsurfb.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Infections from multi-drug resistant bacteria (MDRB) have raised a worldwide concern, with projections indicating that fatalities from these infections could surpass those from cancer by 2050. This troubling trend is influenced by several factors, including the scarcity of new antibiotics to tackle challenging infections, the prohibitive costs of last-resort antibiotics, the inappropriate use of antimicrobial agents in agriculture and aquaculture, and the over-prescription of antibiotics in community settings. One promising alternative treatment is the application of antimicrobial peptides (AMPs) against MDRB. Hydrogels can facilitate the delivery of these antimicrobials, enhancing their biocompatibility and bioavailability. The Peptide-Hydrogel Association (PHA) capitalizes on the distinct properties of both peptides and hydrogels, resulting in multifunctional systems suitable for various antibacterial purposes. Multiple strategies can be employed to develop a PHA, including peptide-based hydrogels, hydrogels infused with peptides, and hydrogels modified with peptide functionalities. The research examined in this review showcases the strong effectiveness of these systems against MDRB and underscores their potential in creating multifunctional and multi-responsive solutions for various infection scenarios. The high efficacy of PHAs represents a promising and innovative therapeutic strategy in combating infections caused by MDRB.
Collapse
Affiliation(s)
- Marcelo Guerrero
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - David Filho
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Nicolás Ayala A
- Department of Genetics, Microbiology and statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Department of Pharmacy and Pharmaceutical Technology and Physicochemistry, Faculty of Pharmacy and Food Sciences, School of Pharmacy, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Adolfo Marican
- Institute of Chemistry of Natural Research, University of Talca, Talca 3460000, Chile
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Esteban F Durán-Lara
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| |
Collapse
|
2
|
Sun H, Qu Y, Lei X, Xu Q, Li S, Shi Z, Xiao H, Zhang C, Yang Z. Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review. Toxins (Basel) 2024; 16:452. [PMID: 39591207 PMCID: PMC11598298 DOI: 10.3390/toxins16110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Arthritis has a high global prevalence. During the early ancient human era, bee (Apis) venom therapy was employed in Egypt, Greece, and China to alleviate ailments such as arthritis and neuralgia. In addition, bee venom has long been used as a traditional medicine for immune-related diseases in Korea. Wasp (Vespa) venom is a folk medicine of the Jingpo people in Yunnan, China, and has been widely used to treat rheumatoid arthritis. In spite of this, the underlying mechanisms of bee and wasp venoms for the treatment of arthritis are yet to be fully understood. In recent years, researchers have investigated the potential anti-arthritic properties of bee and wasp venoms. Studies have shown that both bee and wasp venom can improve swelling, pain, and inflammation caused by arthritis. The difference is that bee venom reduces arthritis damage to bone and cartilage by inhibiting the IRAK2/TAK1/NF-κB signaling pathway, NF-κB signaling pathway, and JAK/STAT signaling pathway, as well as decreasing osteoclastogenesis by inhibiting the RANKL/RANK signaling pathway. Wasp venom, on the other hand, regulates synovial cell apoptosis via the Bax/Bcl-2 signaling pathway, inhibits the JAK/STAT signaling pathway to reduce inflammation production, and also ameliorates joint inflammation by regulating redox balance and iron death in synovial cells. This review provides a detailed overview of the various types of arthritis and their current therapeutic approaches; additionally, it comprehensively analyzes the therapeutic properties of bee venom, wasp venom, or venom components used as anti-arthritic drugs and explores their mechanisms of action in anti-arthritic therapy.
Collapse
Affiliation(s)
- Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Siming Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Zhengmei Shi
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (H.S.); (Y.Q.); (X.L.); (Q.X.); (S.L.); (Z.S.); (H.X.)
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, China
| |
Collapse
|
3
|
Nagappan S, Apoorva S, Shome A, Bishnoi S, Shrivastava S, Mahawar M. Sensitivity to antimicrobial peptide A (SapA) contributes to the survival of Salmonella typhimurium against antimicrobial peptides, neutrophils and virulence in mice. Arch Microbiol 2024; 206:302. [PMID: 38874634 DOI: 10.1007/s00203-024-04032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.
Collapse
Affiliation(s)
- Sabapathi Nagappan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shekhar Apoorva
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shikha Bishnoi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| |
Collapse
|
4
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
5
|
Krongdang S, Phokasem P, Venkatachalam K, Charoenphun N. Edible Insects in Thailand: An Overview of Status, Properties, Processing, and Utilization in the Food Industry. Foods 2023; 12:foods12112162. [PMID: 37297407 DOI: 10.3390/foods12112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Edible insects have become increasingly popular in Thailand as a nutritious and appealing alternative food source. As the edible insect industry in the country expands rapidly, efforts are being made to transform it into an economically viable sector with substantial commercial potential. Some of the most consumed and sold edible insects in Thailand include locusts, palm weevils, silkworm pupae, bamboo caterpillars, crickets, red ants, and giant water bugs. With its strong growth, Thailand has the potential to emerge as a global leader in the production and promotion of edible insect products. Edible insects are an excellent source of protein, fat, vitamins, and minerals. In particular, crickets and grasshoppers are protein-rich, with the average protein content of edible insects ranging from 35 to 60 g/100 g of dry weight or 10 to 25 g/100 g of fresh weight. This surpasses the protein content of many plant-based sources. However, the hard exoskeleton of insects, which is high in chitin, can make them difficult to digest. In addition to their nutritional value, edible insects contain biologically active compounds that offer various health benefits. These include antibacterial, anti-inflammatory, anti-collagenase, elastase-inhibitory, α-glucosidase-inhibitory, pancreatic lipase-inhibitory, antidiabetic/insulin-like/insulin-like peptide (ApILP), antidiabetic, anti-aging, and immune-enhancing properties. The Thai food industry can process and utilize edible insects in diverse ways, such as low-temperature processing, including refrigeration and freezing, traditional processing techniques, and incorporating insects into products, such as flour, protein, oil, and canned food. This review offers a comprehensive overview of the status, functional properties, processing, and utilization of edible insects in Thailand, and it serves as a valuable resource for those interested in edible insects and provides guidance for their application in various fields.
Collapse
Affiliation(s)
- Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Chanthaburi 22170, Thailand
| |
Collapse
|
6
|
Structure-Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula lewisii. Int J Mol Sci 2022; 23:ijms23158269. [PMID: 35897844 PMCID: PMC9332802 DOI: 10.3390/ijms23158269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mastoparan (MP) is an antimicrobial cationic tetradecapeptide with the primary structure INLKALAALAKKIL-NH2. This amphiphilic α-helical peptide was originally isolated from the venom of the wasp Paravespula lewisii. MP shows a variety of biological activities, such as inhibition of the growth of Gram-positive and Gram-negative bacteria, as well as hemolytic activity and activation of mast cell degranulation. Although MP appears to be toxic, studies have shown that its analogs have a potential therapeutic application as antimicrobial, antiviral and antitumor agents. In the present study we have designed and synthesized several new chimeric mastoparan analogs composed of MP and other biologically active peptides such as galanin, RNA III inhibiting peptide (RIP) or carrying benzimidazole derivatives attached to the ε-amino side group of Lys residue. Next, we compared their antimicrobial activity against three reference bacterial strains and conformational changes induced by membrane-mimic environments using circular dichroism (CD) spectroscopy. A comparative analysis of the relationship between the activity of peptides and the structure, as well as the calculated physicochemical parameters was also carried out. As a result of our structure-activity study, we have found two analogs of MP, MP-RIP and RIP-MP, with interesting properties. These two analogs exhibited a relatively high antibacterial activity against S. aureus compared to the other MP analogs, making them a potentially attractive target for further studies. Moreover, a comparative analysis of the relationship between peptide activity and structure, as well as the calculated physicochemical parameters, may provide information that may be useful in the design of new MP analogs.
Collapse
|