1
|
Erkoc P, Schiffmann S, Ulshöfer T, Henke M, Marner M, Krämer J, Predel R, Schäberle TF, Hurka S, Dersch L, Vilcinskas A, Fürst R, Lüddecke T. Determining the pharmacological potential and biological role of linear pseudoscorpion toxins via functional profiling. iScience 2024; 27:110209. [PMID: 39021791 PMCID: PMC11253529 DOI: 10.1016/j.isci.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.
Collapse
Affiliation(s)
- Pelin Erkoc
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Marina Henke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Michael Marner
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Till F. Schäberle
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Robert Fürst
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tim Lüddecke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| |
Collapse
|
2
|
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins (Basel) 2024; 16:272. [PMID: 38922166 PMCID: PMC11209139 DOI: 10.3390/toxins16060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Patrick Hölker
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
3
|
Krämer J, Pommerening R, Predel R. Equipped for Sexual Stings? Male-Specific Venom Peptides in Euscorpius italicus. Int J Mol Sci 2022; 23:ijms231911020. [PMID: 36232328 PMCID: PMC9570025 DOI: 10.3390/ijms231911020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the animal kingdom, intraspecific variation occurs, for example, between populations, different life stages, and sexes. For venomous animals, this can involve differences in their venom composition. In cases where venom is utilized in the context of mating, the differences in composition might be driven by sexual selection. In this regard, the genus Euscorpius is a promising group for further research, as some of these scorpions exhibit a distinct sexual dimorphism and are known to perform a sexual sting during mating. However, the venom composition of this genus remains largely unexplored. Here, we demonstrate that Euscorpius italicus exhibits a male-specific venom composition, and we identify a large fraction of the substances involved. The sex specificity of venom peptides was first determined by analyzing the presence/absence patterns of ion signals in MALDI-TOF mass spectra of venom samples from both sexes and juveniles. Subsequently, a proteo-transcriptomic analysis provided sequence information on the relevant venom peptides and their corresponding precursors. As a result, we show that several potential toxin precursors are down-regulated in male venom glands, possibly to reduce toxic effects caused to females during the sexual sting. We have identified the precursor of one of the most prominent male-specific venom peptides, which may be an ideal candidate for activity tests in future studies. In addition to the description of male-specific features in the venom of E. italicus, this study also includes a general survey of venom precursors in this species.
Collapse
|
4
|
Krämer J, Lüddecke T, Marner M, Maiworm E, Eichberg J, Hardes K, Schäberle TF, Vilcinskas A, Predel R. Antimicrobial, Insecticidal and Cytotoxic Activity of Linear Venom Peptides from the Pseudoscorpion Chelifer cancroides. Toxins (Basel) 2022; 14:58. [PMID: 35051034 PMCID: PMC8778599 DOI: 10.3390/toxins14010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Linear cationic venom peptides are antimicrobial peptides (AMPs) that exert their effects by damaging cell membranes. These peptides can be highly specific, and for some, a significant therapeutic value was proposed, in particular for treatment of bacterial infections. A prolific source of novel AMPs are arthropod venoms, especially those of hitherto neglected groups such as pseudoscorpions. In this study, we describe for the first time pharmacological effects of AMPs discovered in pseudoscorpion venom. We examined the antimicrobial, cytotoxic, and insecticidal activity of full-length Checacin1, a major component of the Chelifer cancroides venom, and three truncated forms of this peptide. The antimicrobial tests revealed a potent inhibitory activity of Checacin1 against several bacteria and fungi, including methicillin resistant Staphylococcus aureus (MRSA) and even Gram-negative pathogens. All peptides reduced survival rates of aphids, with Checacin1 and the C-terminally truncated Checacin11-21 exhibiting effects comparable to Spinosad, a commercially used pesticide. Cytotoxic effects on mammalian cells were observed mainly for the full-length Checacin1. All tested peptides might be potential candidates for developing lead structures for aphid pest treatment. However, as these peptides were not yet tested on other insects, aphid specificity has not been proven. The N- and C-terminal fragments of Checacin1 are less potent against aphids but exhibit no cytotoxicity on mammalian cells at the tested concentration of 100 µM.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Michael Marner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Till F Schäberle
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|