1
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
2
|
Alsultan A, Alghamdi WA, Alghamdi J, Alharbi AF, Aljutayli A, Albassam A, Almazroo O, Alqahtani S. Clinical pharmacology applications in clinical drug development and clinical care: A focus on Saudi Arabia. Saudi Pharm J 2020; 28:1217-1227. [PMID: 33132716 PMCID: PMC7584801 DOI: 10.1016/j.jsps.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Drug development, from preclinical to clinical studies, is a lengthy and complex process. There is an increased interest in the Kingdom of Saudi Arabia (KSA) to promote innovation, research and local content including clinical trials (Phase I-IV). Currently, there are over 650 registered clinical trials in Saudi Arabia, and this number is expected to increase. An important part of drug development and clinical trials is to assure the safe and effective use of drugs. Clinical pharmacology plays a vital role in informed decision making during the drug development stage as it focuses on the effects of drugs in humans. Disciplines such as pharmacokinetics, pharmacodynamics and pharmacogenomics are components of clinical pharmacology. It is a growing discipline with a range of applications in all phases of drug development, including selecting optimal doses for Phase I, II and III studies, evaluating bioequivalence and biosimilar studies and designing clinical studies. Incorporating clinical pharmacology in research as well as in the requirements of regulatory agencies will improve the drug development process and accelerate the pipeline. Clinical pharmacology is also applied in direct patient care with the goal of personalizing treatment. Tools such as therapeutic drug monitoring, pharmacogenomics and model informed precision dosing are used to optimize dosing for patients at an individual level. In KSA, the science of clinical pharmacology is underutilized and we believe it is important to raise awareness and educate the scientific community and healthcare professionals in terms of its applications and potential. In this review paper, we provide an overview on the use and applications of clinical pharmacology in both drug development and clinical care.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Wael A Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Jahad Alghamdi
- The Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abeer F Alharbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | | | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
4
|
Ovsyannikova IG, Haralambieva IH, Kennedy RB, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination. Gene 2012; 510:59-65. [PMID: 23009887 DOI: 10.1016/j.gene.2012.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/08/2012] [Accepted: 08/16/2012] [Indexed: 11/17/2022]
Abstract
We explored associations between SNPs in cytokine/cytokine receptor genes and cellular immunity in subjects following primary smallpox vaccination. We also analyzed the genotype-phenotype associations discovered in the Caucasian subjects among a cohort of African-Americans. In Caucasians we found 277 associations (p<0.05) between gene SNPs and inter-individual variations in IFN-α, IL-12p40, IL-1β, IL-2, and TNF-α secretion levels. A collection of SNPs in the IL1RN, IL2RB, IL4R, IL6, IL10RB, IL12A, and IL12RB2 genes had consistent associations among both Caucasians and African-Americans. A regulatory SNP (rs452204) in the IL1RN gene was significantly associated with higher levels of IL-2 secretion in an allele dose-dependent manner in both race groups (p=0.05 for Caucasians and p=0.002 for African-Americans). IL12RB2 polymorphism rs3790567 was associated with a dose-related decrease in IL-1β secretion (p=0.009 for Caucasians and p=0.01 for African-Americans). Our results demonstrate that variations in smallpox vaccine-induced cytokine responses are modulated by genetic polymorphisms in cytokine and cytokine receptor genes.
Collapse
|
5
|
Hawkins N, de Vries J, Boddington P, Kaye J, Heeney C. Planning for translational research in genomics. Genome Med 2009; 1:87. [PMID: 19747376 PMCID: PMC2768994 DOI: 10.1186/gm87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/26/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023] Open
Abstract
Translation of research findings into clinical practice is an important aspect of medical progress. Even for the early stages of genomics, research aiming to deepen understandings of underlying mechanisms of disease, questions about the ways in which such research ultimately can be useful in medical treatment and public health are of key importance. Whilst some research data may not apparently lend themselves to immediate clinical benefit, being aware of the issues surrounding translation at an early stage can enhance the delivery of the research to the clinic if a medical application is later found. When simple steps are taken during initial project planning, the pathways towards the translation of genomic research findings can be managed to optimize long-term benefits to health. This piece discusses the key areas of collaboration agreements, distribution of revenues and recruitment and sample collection that are increasingly important to successful translational research in genomics.
Collapse
Affiliation(s)
- Naomi Hawkins
- The Ethox Centre, Department of Public Health, University of Oxford, Old Road Campus, Headington, Oxford OX3 7LF, UK.
| | | | | | | | | |
Collapse
|