Catlin NR, Willson CJ, Stout M, Kissling GE, Waidyanatha S, Baker GL, Hayden BK, Wyde M. Evaluation of the respiratory tract toxicity of ortho-phthalaldehyde, a proposed alternative for the chemical disinfectant glutaraldehyde.
Inhal Toxicol 2017;
29:414-427. [PMID:
29039228 DOI:
10.1080/08958378.2017.1390015]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ortho-Phthalaldehyde (OPA) is a high-level chemical disinfectant that is commonly used for chemical sterilization of dental and medical instruments as an alternative to glutaraldehyde, a known skin and respiratory sensitizer. Concern for safe levels of human exposure remains due to a lack of toxicity data as well as human case reports of skin and respiratory sensitization following OPA exposure. The present study evaluated the inhalational toxicity of OPA in Harlan Sprague-Dawley rats and B6C3F1/N mice. Groups of 10 male and female rats and mice were exposed to OPA by whole-body inhalation for 3 months at concentrations of 0 (control), 0.44, 0.88, 1.75, 3.5, or 7.0 ppm. Rats and mice developed a spectrum of lesions at sites of contact throughout the respiratory tract (nose, larynx, trachea, lung), as well as in the skin and eye, consistent with a severe irritant response. In general, histologic lesions (necrosis, inflammation, regeneration, hyperplasia and metaplasia) occurred at deeper sites within the respiratory tract with increasing exposure concentration. As a first site of contact, the nose exhibited the greatest response to OPA exposure and resulted in an increased incidence, severity and variety of lesions compared to a previous study of glutaraldehyde exposure at similar exposure concentrations. This increased response in the nasal cavity, combined with extensive lesions throughout the respiratory tract, provides concern for use of OPA as a replacement for glutaraldehyde as a high-level disinfectant.
Collapse