1
|
Mao C, Gong L, Kang W. Effect and mechanism of resveratrol on ferroptosis mediated by p53/SLC7A11 in oral squamous cell carcinoma. BMC Oral Health 2024; 24:773. [PMID: 38987730 PMCID: PMC11238462 DOI: 10.1186/s12903-024-04395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE Resveratrol (Res) is a natural phytoestrogen with antitumor activity. This study sought to investigate the role of Res in ferroptosis in oral squamous cell carcinoma (OSCC). METHODS Normal human oral keratinocyte (HOK)/oral OSCC (CAL-27/SCC-9) cell lines were treated with different doses of Res. Res toxicity was determined by MTT assay, with half maximal inhibitory concentration values of Res on CAL-27 and SCC-9 cells calculated. Cell viability/colony formation efficiency/migration/invasion/cycle were assessed by CCK-8/colony formation assay/transwell assay/flow cytometry. The expression of p53 protein in the nucleus and cytoplasm, glutathione peroxidase 4 (GPX4) expression, and SLC7A11 messenger RNA (mRNA) and protein expression levels were determined by Western blot and RT-qPCR. Fe2+ content, reactive oxygen species (ROS) level, reduced glutathione (GSH), and lactate dehydrogenase (LDH) release were assessed. RESULTS Medium- to low-dose Res had no toxic effect on HOK cells, while high-dose Res markedly reduced HOK cell viability. Res significantly suppressed the viability of OSCC cells (CAL-27 and SCC-9). Res inhibited OSCC cell colony formation/migration/invasion, and induced G1 phase arrest. Res caused the translocation of p53 protein to the nucleus, obviously increased Fe2+ content, ROS level and LDH release, decreased GSH content and GPX4 protein expression, and induced ferroptosis. Down-regulation of p53 partially reversed the inhibitory effects of Res on CAL-27 cell malignant behaviors. Res inhibited SLC7A11 transcription by promoting p53 entry into the nucleus. SLC7A11 overexpression negated the the regulatory effects of p53 knockout on the role of Res in OSCC cell malignant behaviors and ferroptosis. CONCLUSION Res accelerated ferroptosis and inhibited malignant behaviors in OSCC cells by regulating p53/SLC7A11.
Collapse
Affiliation(s)
- Chen Mao
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China.
| | - Liqiang Gong
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| | - Wenming Kang
- Department of Stomatology, Loudi Central Hospital of Hunan Province, 51 Changqing Middle Street, Loudi, 417000, Hunan, China
| |
Collapse
|
2
|
Tan Z, Li J, Zhang X, Yang X, Zhang Z, Yin KJ, Huang H. P53 Promotes Retinoid Acid-induced Smooth Muscle Cell Differentiation by Targeting Myocardin. Stem Cells Dev 2018; 27:534-544. [PMID: 29482449 DOI: 10.1089/scd.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TP53 is a widely studied tumor suppressor gene that controls various cellular functions, including cell differentiation. However, little is known about its functional roles in smooth muscle cells (SMCs) differentiation from embryonic stem cells (ESCs). SMC differentiation is at the heart of our understanding of vascular development, normal blood pressure homeostasis, and the pathogenesis of vascular diseases such as atherosclerosis, hypertension, restenosis, as well as aneurysm. Using retinoid acid (RA)-induced SMC differentiation models, we observed that p53 expression is increased during in vitro differentiation of mouse ESCs into SMCs. Meanwhile, suppression of p53 by shRNA reduced RA-induced SMC differentiation. Mechanistically, we have identified for the first time that Myocardin, a transcription factor that induces muscle cell differentiation and muscle-specific gene expression, is the direct target of p53 by bioinformatic analysis, luciferase reporter assay, and chromatin immunoprecipitation approaches. Moreover, in vivo SMC-selective p53 transgenic overexpression inhibited injury-induced neointimal formation. Taken together, our data demonstrate that p53 and its target gene, Myocardin, play regulatory roles in SMC differentiation. This study may lead to the identification of novel target molecules that may, in turn, lead to novel drug discoveries for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhou Tan
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Jingya Li
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Xuejing Zhang
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xueqin Yang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Zunyi Zhang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Ke-Jie Yin
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Huarong Huang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
3
|
Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 2018; 9:29. [PMID: 29295976 PMCID: PMC5750208 DOI: 10.1038/s41467-017-02280-y] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various biological processes. However, little is known about the effects of lncRNAs on autophagy. Here we report that a lncRNA, termed cardiac autophagy inhibitory factor (CAIF), suppresses cardiac autophagy and attenuates myocardial infarction by targeting p53-mediated myocardin transcription. Myocardin expression is upregulated upon H2O2 and ischemia/reperfusion, and knockdown of myocardin inhibits autophagy and attenuates myocardial infarction. p53 regulates cardiomyocytes autophagy and myocardial ischemia/reperfusion injury by regulating myocardin expression. CAIF directly binds to p53 protein and blocks p53-mediated myocardin transcription, which results in the decrease of myocardin expression. Collectively, our data reveal a novel CAIF-p53-myocardin axis as a critical regulator in cardiomyocyte autophagy, which will be potential therapeutic targets in treatment of defective autophagy-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Cui-Yun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Rui-Bei Li
- School of Professional Studies, Northwestern University, Chicago, IL, 60611, USA
| | - Lu-Yu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tao An
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Rong-Cheng Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Mei Zhai
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Yan Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Kao-Wen Yan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Han Dong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Chan Shan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Sheng Xu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qi Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Hui Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
4
|
He Y, Zeng H, Yu Y, Zhang J, Duan X, Liu Q, Yang B. Resveratrol improves smooth muscle carcinogenesis in the progression of chronic prostatitis via the downregulation of c-kit/SCF by activating Sirt1. Biomed Pharmacother 2017; 95:161-166. [PMID: 28841456 DOI: 10.1016/j.biopha.2017.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Bladder smooth muscle cell death accompanied by hyperplasia and hypertrophy, as induced by inflammation, is the primary cause for poor bladder function. There are emerging evidences on the role of chronic inflammation as a factor involved in carcinogenesis and progression. We aim to determine the bladder smooth muscle pathological changes and dysfunction in chronic prostatitis (CP), to investigate whether resveratrol can improve the urinary dysfunction and the role of c-kit/SCF pathway, that has been associated with the smooth muscle carcinogenesis. METHOD Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. H&E staining was performed to identify the histopathological changes in prostates and bladders. Western blotting and immunohistochemical staining examined the expression level of C-kit, stem cell factor (SCF), Sirt1, apoptosis associated proteins. RESULTS the model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Meanwhile, bladder muscle arranged in disorder with fracture, and cells appeared atypia. The activity of C-kit/SCF was up-regulated, the carcinogenesis associated proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. CONCLUSIONS activated c-kit/SCF and bladder muscle carcinogenesis were involved in the pathological processes of CP, which was improved after resveratrol treatment via the downregulation of c-kit/SCF by activating Sirt1.
Collapse
Affiliation(s)
- Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huizhi Zeng
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiashu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xingping Duan
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| | - Bo Yang
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Borska S, Pedziwiatr M, Danielewicz M, Nowinska K, Pula B, Drag-Zalesinska M, Olbromski M, Gomulkiewicz A, Dziegiel P. Classical and atypical resistance of cancer cells as a target for resveratrol. Oncol Rep 2016; 36:1562-8. [PMID: 27431533 DOI: 10.3892/or.2016.4930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
The phenomenon of cancer cell resistance to chemotherapeutics is the main cause of insensitivity to anticancer therapy. Thus, the current challenge remains searching for substances sensitising the activity of cytostatic drugs. In this respect, resveratrol is a very promising therapeutic agent. It has pleiotropic effect on cancer cells, which can play a key role in numerous resistance mechanisms, both classical and atypical. The purpose of the present study was to assess the effect of resveratrol on the inhibition of human pancreatic cancer cell proliferation and on the level of cytostatic resistance-associated proteins. The study was performed on human pancreatic cancer cell lines EPP85-181P (control), EPP85-181RDB (daunorubicin resistance) and EPP85-181PRNOV (mitoxantrone resistance). The effect of resveratrol on the viability and proliferation of the studied cell lines was evaluated by SRB assay, whereas cell cycle arrest and cytostatic accumulation by FACS. Western blot analysis was used to determine the level of P-glycoprotein, topoisomerase II α and β and immunofluorescence technique to visualise the proteins in the cells. Resveratrol inhibited proliferation of all studied cell lines. Phase-specific cell cycle arrest depended on the type of cancer cells. Resveratrol decreased the level and activity of P-gp in EPP85-181RDB cells. In EPP85-181PRNOV cells, expression of both TopoII isoforms increased in a statistically significant manner. The results of in vitro studies support the possibility of potential use of resveratrol in breaking cancer cell resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sylwia Borska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Pedziwiatr
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Danielewicz
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Nowinska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Mateusz Olbromski
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dziegiel
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
6
|
Kizmazoglu C, Aydin HE, Sevin IE, Kalemci O, Yüceer N, Atasoy MA. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats. J Korean Neurosurg Soc 2015; 58:508-12. [PMID: 26819684 PMCID: PMC4728087 DOI: 10.3340/jkns.2015.58.6.508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
Background Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.
Collapse
Affiliation(s)
- Ceren Kizmazoglu
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Hasan Emre Aydin
- Department of Neurosurgery, Eskisehir State Hospital, Eskisehir, Turkey.; Department of Pharmacology, Eskişehir Osmangazi University, Eskisehir, Turkey
| | - Ismail Ertan Sevin
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Orhan Kalemci
- Department of Neurosurgery, Dokuz Eylul University, School of Medicine Hospital, Izmir, Turkey
| | - Nurullah Yüceer
- Department of Neurosurgery, Katip Celebi University Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | - Metin Ant Atasoy
- Department of Neurosurgery, Eskişehir Osmangazi University School of Medicine Hospital, Eskisehir, Turkey
| |
Collapse
|
7
|
Lashmanova E, Proshkina E, Zhikrivetskaya S, Shevchenko O, Marusich E, Leonov S, Melerzanov A, Zhavoronkov A, Moskalev A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res 2015; 100:228-41. [DOI: 10.1016/j.phrs.2015.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022]
|
8
|
Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2015; 15:1499-514. [PMID: 25482947 DOI: 10.4161/15384047.2014.955743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Act D, actinomycin D
- BrdU, bromodeoxyuridine
- CHX, cycloheximide
- DMSO, dimethylsulphoxide
- DOX, doxorubicin
- EGCG, epigallocatechin-3-gallate
- FACS, fluorescence-activated cell sorting
- MPA, mycophenolic acid
- MTT, (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide)
- PI, propidium iodide
- actinomycin D
- caffeine
- glioma
- mTOR
- mTOR, mechanistic target of rapamycin
- nutlin-3
- p21
- p53
- rapamycin
- ribosomal protein L11
- ribosome biogenesis
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- a Department of Oncology-Pathology; Karolinska Institutet; Cancer Center Karolinska ; Karolinska University Hospital ; Stockholm , Sweden
| | | | | |
Collapse
|
9
|
Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1155-77. [DOI: 10.1016/j.bbadis.2014.10.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
|
10
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
11
|
Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014; 35:146-54. [PMID: 24439680 DOI: 10.1016/j.tips.2013.12.004] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
Recent studies in mice have identified single molecules that can delay multiple diseases of aging and extend lifespan. In theory, such molecules could prevent dozens of diseases simultaneously, potentially extending healthy years of life. In this review, we discuss recent advances, controversies, opportunities, and challenges surrounding the development of SIRT1 activators, molecules with the potential to delay aging and age-related diseases. Sirtuins comprise a family of NAD⁺-dependent deacylases that are central to the body's response to diet and exercise. New studies indicate that both natural and synthetic sirtuin activating compounds (STACs) work via a common allosteric mechanism to stimulate sirtuin activity, thereby conferring broad health benefits in rodents, primates, and possibly humans. The fact that two-thirds of people in the USA who consume multiple dietary supplements consume resveratrol, a SIRT1 activator, underscores the importance of understanding the biochemical mechanism, physiological effects, and safety of STACs.
Collapse
Affiliation(s)
- Basil P Hubbard
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Scuto A, Kirschbaum M, Buettner R, Kujawski M, Cermak JM, Atadja P, Jove R. SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-κB/STAT3 complex to its promoter in malignant lymphoid cells. Cell Death Dis 2013; 4:e635. [PMID: 23681230 PMCID: PMC3674366 DOI: 10.1038/cddis.2013.159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
Abstract
We explored the activity of SIRT1 activators (SRT501 and SRT2183) alone and in combination with panobinostat in a panel of malignant lymphoid cell lines in terms of biological and gene expression responses. SRT501 and SRT2183 induced growth arrest and apoptosis, concomitant with deacetylation of STAT3 and NF-κB, and reduction of c-Myc protein levels. PCR arrays revealed that SRT2183 leads to increased mRNA levels of pro-apoptosis and DNA-damage-response genes, accompanied by accumulation of phospho-H2A.X levels. Next, ChIP assays revealed that SRT2183 reduces the DNA-binding activity of both NF-κB and STAT3 to the promoter of GADD45G, which is one of the most upregulated genes following SRT2183 treatment. Combination of SRT2183 with panobinostat enhanced the anti-growth and anti-survival effects mediated by either compound alone. Quantitative-PCR confirmed that the panobinostat in combination with SRT2183, SRT501 or resveratrol leads to greater upregulation of GADD45G than any of the single agents. Panobinostat plus SRT2183 in combination showed greater inhibition of c-Myc protein levels and phosphorylation of H2A.X, and increased acetylation of p53. Furthermore, EMSA revealed that NF-κB binds directly to the GADD45G promoter, while STAT3 binds indirectly in complexes with NF-κB. In addition, the binding of NF-κB/STAT3 complexes to the GADD45G promoter is inhibited following panobinostat, SRT501 or resveratrol treatment. Moreover, the combination of panobinostat with SRT2183, SRT501 or resveratrol induces a greater binding repression than either agent alone. These data suggest that STAT3 is a corepressor with NF-κB of the GADD45G gene and provides in vitro proof-of-concept for the combination of HDACi with SIRT1 activators as a potential new therapeutic strategy in lymphoid malignancies.
Collapse
Affiliation(s)
- A Scuto
- Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ichiki T, Miyazaki R, Kamiharaguchi A, Hashimoto T, Matsuura H, Kitamoto S, Tokunou T, Sunagawa K. Resveratrol attenuates angiotensin II-induced senescence of vascular smooth muscle cells. ACTA ACUST UNITED AC 2012; 177:35-9. [DOI: 10.1016/j.regpep.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 03/29/2012] [Accepted: 04/25/2012] [Indexed: 11/25/2022]
|
14
|
Chiu YJ, Hour MJ, Lu CC, Chung JG, Kuo SC, Huang WW, Chen HJ, Jin YA, Yang JS. Novel quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and up-regulation of ATM/p53 signaling pathway. J Orthop Res 2011; 29:1448-56. [PMID: 21425328 DOI: 10.1002/jor.21398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/07/2011] [Indexed: 02/04/2023]
Abstract
Human osteogenic sarcoma is the most common primary bone tumor. Despite of the success of frontline therapy, about 40% of patients have disease progression and further therapy is palliative and toxic. In this study, we developed a novel quinazoline HMJ-30 to investigate the cell growth inhibition and apoptotic responses in U-2 OS human osteogenic sarcoma cells. Our results demonstrated that HMJ-30 significantly reduced cell viabilities of U-2 OS, HOS, and 143B cells in a dose-dependent manner, but it exhibited low cytotoxicity in normal hFOB cells. HMJ-30 induced DNA damage and apoptosis in U-2 OS cells as revealed by morphologic changes, comet assay and DAPI staining. Immuno-staining, colorimetric assays, and Western blotting analyses indicated that activities of caspase-8, caspase-9, and caspase-3 and the levels of Bcl-2 family-related proteins (Bcl-2, Mcl-1, Bax, BAD, and t-Bid) were altered in HMJ-30-treated U-2 OS cells. Pretreatment of cells with caspase-8, -9, and -3 specific inhibitors significantly reduced the cell growth inhibition. HMJ-30-induced apoptosis was mediated through both death-receptor and mitochondria-dependent apoptotic pathways in U-2 OS cells. HMJ-30 induced early phosphorylation of p53(Ser18) was through the activation of ataxia telangiectasia mutated (ATM) in U-2 OS cells. The cell growth inhibition by HMJ-30 was substantially attenuated either by the pre-incubation of U-2 OS cells with N-acetylcysteine (NAC, an antioxidant) and caffeine (an ATM kinase inhibitor) or by p53 knockdown via RNAi. In conclusion, ROS dependent-ATM/p53 signaling pathway is involved in HMJ-30-induced apoptosis in U-2 OS cells.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|