1
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Dayanidhi DL, Somarelli JA, Mantyh JB, Rupprecht G, Roghani RS, Vincoff S, Shin I, Zhao Y, Kim SY, McCall S, Hong J, Hsu DS. Psymberin, a marine-derived natural product, induces cancer cell growth arrest and protein translation inhibition. Front Med (Lausanne) 2022; 9:999004. [PMID: 36743670 PMCID: PMC9894252 DOI: 10.3389/fmed.2022.999004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent form of cancer in the United States and results in over 50,000 deaths per year. Treatments for metastatic CRC are limited, and therefore there is an unmet clinical need for more effective therapies. In our prior work, we coupled high-throughput chemical screens with patient-derived models of cancer to identify new potential therapeutic targets for CRC. However, this pipeline is limited by (1) the use of cell lines that do not appropriately recapitulate the tumor microenvironment, and (2) the use of patient-derived xenografts (PDXs), which are time-consuming and costly for validation of drug efficacy. To overcome these limitations, we have turned to patient-derived organoids. Organoids are increasingly being accepted as a "standard" preclinical model that recapitulates tumor microenvironment cross-talk in a rapid, cost-effective platform. In the present work, we employed a library of natural products, intermediates, and drug-like compounds for which full synthesis has been demonstrated. Using this compound library, we performed a high-throughput screen on multiple low-passage cancer cell lines to identify potential treatments. The top candidate, psymberin, was further validated, with a focus on CRC cell lines and organoids. Mechanistic and genomics analyses pinpointed protein translation inhibition as a mechanism of action of psymberin. These findings suggest the potential of psymberin as a novel therapy for the treatment of CRC.
Collapse
Affiliation(s)
- Divya L. Dayanidhi
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Jason A. Somarelli
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - John B. Mantyh
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Gabrielle Rupprecht
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Roham Salman Roghani
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Sophia Vincoff
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Iljin Shin
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, United States
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Shannon McCall
- Department of Pathology, Duke University, Durham, NC, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - David S. Hsu
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Fakhri S, Abdian S, Moradi SZ, Delgadillo BE, Fimognari C, Bishayee A. Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus. Mar Drugs 2022; 20:md20100625. [PMID: 36286449 PMCID: PMC9604966 DOI: 10.3390/md20100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms, including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochondria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Blake E. Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or
| |
Collapse
|
4
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
5
|
Burgers LD, Fürst R. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation. Pharmacol Res 2021; 170:105535. [PMID: 34058326 DOI: 10.1016/j.phrs.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic protein synthesis is the highly conserved, complex mechanism of translating genetic information into proteins. Although this process is essential for cellular homoeostasis, dysregulations are associated with cellular malfunctions and diseases including cancer and diabetes. In the challenging and ongoing search for adequate treatment possibilities, natural products represent excellent research tools and drug leads for new interactions with the translational machinery and for influencing mRNA translation. In this review, bacterial-, marine- and plant-derived natural compounds that interact with different steps of mRNA translation, comprising ribosomal assembly, translation initiation and elongation, are highlighted. Thereby, the exact binding and interacting partners are unveiled in order to accurately understand the mode of action of each natural product. The pharmacological relevance of these compounds is furthermore assessed by evaluating the observed biological activities in the light of translational inhibition and by enlightening potential obstacles and undesired side-effects, e.g. in clinical trials. As many of the natural products presented here possess the potential to serve as drug leads for synthetic derivatives, structural motifs, which are indispensable for both mode of action and biological activities, are discussed. Evaluating the natural products emphasises the strong diversity of their points of attack. Especially the fact that selected binding partners can be set in direct relation to different diseases emphasises the indispensability of natural products in the field of drug development. Discovery of new, unique and unusual interacting partners again renders them promising tools for future research in the field of eukaryotic mRNA translation.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
6
|
Paliwal D, Srivastava S, Sharma PK, Ahmad I. Marine Originated Fused Heterocyclic: Prospective Bioactivity against Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190328205729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The deep Sea has several herbal sources such as marine organisms. These marine
sources possibly have effective anticancer properties. The fused heterocyclic ring with marine
source has special characteristics with minimum toxicity and with maximum anticancer
effects. The review focused on and classified the prospective lead compounds which have
shown a promising therapeutic range as anticancer agents in clinical and preclinical trials.
Collapse
Affiliation(s)
- Deepika Paliwal
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Saurabh Srivastava
- Department of Oral & Maxillofacial Surgery, King George’s Medical University, Lucknow, UP 226003, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Shiobara T, Nagumo Y, Nakajima R, Fukuyama T, Yokoshima S, Usui T. A novel translation inhibitor, mersicarpine, inhibits S-phase progression and induces apoptosis in HL60 cells. Biosci Biotechnol Biochem 2021; 85:92-96. [PMID: 33577668 DOI: 10.1093/bbb/zbaa070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/14/2022]
Abstract
Mersicarpine is an aspidosperma alkaloid isolated from the Kopsia genus of plants. Its intriguing structural features have attracted much attention in synthetic organic chemistry, but no biological activity has been reported. Here, we report the effects of mersicarpine on human leukemia cell line HL60. At concentrations above 30 µm, mersicarpine reversibly arrested cell cycle progression in S-phase. At higher concentrations, it induced not only production of reactive oxygen species, but also apoptosis. Macromolecular synthesis assay revealed that mersicarpine specifically inhibits protein synthesis. These results suggest that mersicarpine is a novel translation inhibitor that induces apoptosis.
Collapse
Affiliation(s)
- Tomoko Shiobara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Nagumo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Rie Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takeo Usui
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
NLPR3 Inflammasomes and Their Significance for Atherosclerosis. Biomedicines 2020; 8:biomedicines8070205. [PMID: 32664349 PMCID: PMC7399980 DOI: 10.3390/biomedicines8070205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a serious disorder, with numerous potential complications such as cardiovascular disease, ischemic stroke, and myocardial infarction. The origin of atherosclerosis is related to chronic inflammation, lipid metabolism alterations, and oxidative stress. Inflammasomes are the cytoplasmic multiprotein complex triggering the activation of inflammatory response. NLRP3 inflammasomes have a specific activation pathway that involves numerous stimuli, including a wide range of PAMPs and DAMPs. Recent studies of atherosclerotic pathology are focused on the mitochondria that appear to be a promising target for therapeutic approach development. Mitochondria are the main source of reactive oxygen species (ROS) associated with oxidative stress. It was previously shown that NLRP3 inflammasome activation results in mitochondrial damage, but the exact mechanisms of this need to be specified. In this review, we focused on the features of NLRP3 inflammasomes and their significance for atherosclerosis, especially concerning mitochondria.
Collapse
|
9
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
10
|
Chien MH, Chow JM, Lee WJ, Chen HY, Tan P, Wen YC, Lin YW, Hsiao PC, Yang SF. Tricetin Induces Apoptosis of Human Leukemic HL-60 Cells through a Reactive Oxygen Species-Mediated c-Jun N-Terminal Kinase Activation Pathway. Int J Mol Sci 2017; 18:ijms18081667. [PMID: 28758971 PMCID: PMC5578057 DOI: 10.3390/ijms18081667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/20/2023] Open
Abstract
Tricetin is a dietary flavonoid with cytostatic properties and antimetastatic activities in various solid tumors. The anticancer effect of tricetin in nonsolid tumors remains unclear. Herein, the molecular mechanisms by which tricetin exerts its anticancer effects on acute myeloid leukemia (AML) cells were investigated. Results showed that tricetin inhibited cell viability in various types of AML cell lines. Tricetin induced morphological features of apoptosis such as chromatin condensation and phosphatidylserine (PS) externalization, and significantly activated proapoptotic signaling including caspase-8, -9, and -3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in HL-60 AML cells. Of note, tricetin-induced cell growth inhibition was dramatically reversed by a pan caspase and caspase-8- and -9-specific inhibitors, suggesting that this compound mainly acts through a caspase-dependent pathway. Moreover, treatment of HL-60 cells with tricetin induced sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), and inhibition of ERK and JNK by their specific inhibitors respectively promoted and abolished tricetin-induced cell apoptosis. Dichlorofluorescein (DCF) staining showed that intracellular reactive oxygen species (ROS) levels were higher in tricetin-treated HL-60 cells compared to the control group. Moreover, an ROS scavenger, N-acetylcysteine (NAC), reversed tricetin-induced JNK activation and subsequent cell apoptosis. In conclusion, our results indicated that tricetin induced cell death of leukemic HL-60 cells through induction of intracellular oxidative stress following activation of a JNK-mediated apoptosis pathway. A combination of tricetin and an ERK inhibitor may be a better strategy to enhance the anticancer activities of tricetin in AML.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Department of Urology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Hui-Yu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Peng Tan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Yung-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 2017; 233:2116-2132. [DOI: 10.1002/jcp.25930] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Zahra Hoseini
- Faculty of Medicine, Students Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Sepahvand
- Faculty of Medicine, Students Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR; Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
12
|
Liu Q, An C, TenDyke K, Cheng H, Shen YY, Hoye AT, Smith AB. Design, Synthesis, and Evaluation of Irciniastatin Analogues: Simplification of the Tetrahydropyran Core and the C(11) Substituents. J Org Chem 2016; 81:1930-42. [PMID: 26879056 PMCID: PMC4782725 DOI: 10.1021/acs.joc.5b02771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
design, synthesis, and biological evaluation of irciniastatin
A (1) analogues, achieved by removal of three synthetically
challenging structural units, as well as by functional group manipulation
of the C(11) substituent of both irciniastatins A and B (1 and 2), has been achieved. To this end, we first designed
a convergent synthetic route toward the diminutive analogue (+)-C(8)-desmethoxy-C(11)-deoxy-C(12)-didesmethylirciniastatin (6). Key transformations
include an acid-catalyzed 6-exo-tet pyran cyclization,
a chiral Lewis acid mediated aldol reaction, and a facile amide union.
The absolute configuration of 6 was confirmed via spectroscopic
analysis (CD spectrum, HSQC, COSY, and ROESY NMR experiments). Structure–activity
relationship (SAR) studies of 6 demonstrate that the
absence of the three native structural units permits access to analogues
possessing cytotoxic activity in the nanomolar range. Second, manipulation
of the C(11) position, employing late-stage synthetic intermediates
from our irciniastatin syntheses, provides an additional five analogues
(7–11). Biological evaluation of
these analogues indicates a high functional group tolerance at position
C(11).
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Chihui An
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Karen TenDyke
- Eisai Inc. , 4 Corporate Drive, Andover, Massachusetts 01810, United States
| | - Hongsheng Cheng
- Eisai Inc. , 4 Corporate Drive, Andover, Massachusetts 01810, United States
| | | | - Adam T Hoye
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
14
|
Uesugi SI, Watanabe T, Imaizumi T, Ota Y, Yoshida K, Ebisu H, Chinen T, Nagumo Y, Shibuya M, Kanoh N, Usui T, Iwabuchi Y. Total Synthesis and Biological Evaluation of Irciniastatin A (a.k.a. Psymberin) and Irciniastatin B. J Org Chem 2015; 80:12333-50. [PMID: 26544018 DOI: 10.1021/acs.joc.5b02256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Irciniastatin A (a.k.a. psymberin) and irciniastatin B are members of the pederin natural product family, which have potent antitumor activity and structural complexity. Herein, we describe a full account of our total synthesis of (+)-irciniastatin A and (-)-irciniastatin B. Our synthesis features the highly regioselective Eu(OTf)3-catalyzed, DTBMP-assisted epoxide ring opening reaction with MeOH, which enabled a concise synthesis of the C1-C6 fragment, extensive use of AZADO (2-azaadamantane N-oxyl) and its related nitroxyl radical/oxoammonium salt-catalyzed alcohol oxidation throughout the synthesis, and a late-stage assembly of C1-C6, C8-C16, and C17-C25 fragments. In addition, for the synthesis of (-)-irciniastatin B, we achieved the C11-selective control of the oxidation stage via regioselective deprotection and AZADO-catalyzed alcohol oxidation. The synthetic irciniastatins showed high levels of cytotoxic activity against mammalian cells. Furthermore, chemical footprinting experiments using synthetic compounds revealed that the binding site of irciniastatins is the E-site of the ribosome.
Collapse
Affiliation(s)
- Shun-ichiro Uesugi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | - Tsubasa Watanabe
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | - Takamichi Imaizumi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | - Yu Ota
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Keisuke Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Haruna Ebisu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoko Nagumo
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masatoshi Shibuya
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | - Naoki Kanoh
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba , Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Hirano S, Quach HT, Watanabe T, Kanoh N, Iwabuchi Y, Usui T, Kataoka T. Irciniastatin A, a pederin-type translation inhibitor, promotes ectodomain shedding of cell-surface tumor necrosis factor receptor 1. J Antibiot (Tokyo) 2015; 68:417-20. [DOI: 10.1038/ja.2015.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/18/2014] [Accepted: 12/24/2014] [Indexed: 11/09/2022]
|
16
|
Quach HT, Hirano S, Fukuhara S, Watanabe T, Kanoh N, Iwabuchi Y, Usui T, Kataoka T. Irciniastatin A Induces Potent and Sustained Activation of Extracellular Signal-Regulated Kinase and Thereby Promotes Ectodomain Shedding of Tumor Necrosis Factor Receptor 1 in Human Lung Carcinoma A549 Cells. Biol Pharm Bull 2015; 38:941-6. [DOI: 10.1248/bpb.b15-00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hue Tu Quach
- Department of Applied Biology, Kyoto Institute of Technology
| | - Seiya Hirano
- Department of Applied Biology, Kyoto Institute of Technology
| | - Sayuri Fukuhara
- Department of Applied Biology, Kyoto Institute of Technology
| | - Tsubasa Watanabe
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Naoki Kanoh
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takeo Usui
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology
| |
Collapse
|
17
|
Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol 2014. [PMID: 25164609 DOI: 10.1007/s13277-014 -2457-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative that was shown to have anti-inflammatory and anticancer activities in various solid tumors. The anticancer effect of nobiletin on nonsolid tumor remains unclear. Herein, the molecular mechanisms by which nobiletin exerts its anticancer effects on acute myeloid leukemia (AML) cells were investigated. The results showed that nobiletin suppressed cell proliferation in various types of AML cell lines. Moreover, nobiletin induced cell-cycle arrest of HL-60 AML cells at the G0/G1 phase by suppressing extracellular signal-regulated kinase (ERK) activity. Furthermore, nobiletin effectively induced apoptosis of HL-60 cells through caspase-8, caspase-9, and caspases-3 activation concomitantly with a marked induction of p38 mitogen-activated protein kinase (MAPK) activation, but without affecting expression levels of Bcl-2, Bax, or Bid. Taken together, our results suggest that nobiletin inhibited HL-60 cell proliferation through inducing cell-cycle arrest and apoptosis and could serve as a potential additional chemotherapeutic agent for treating AML.
Collapse
|
18
|
Hsiao PC, Lee WJ, Yang SF, Tan P, Chen HY, Lee LM, Chang JL, Lai GM, Chow JM, Chien MH. Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol 2014; 35:11903-11. [PMID: 25164609 DOI: 10.1007/s13277-014-2457-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022] Open
Abstract
Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative that was shown to have anti-inflammatory and anticancer activities in various solid tumors. The anticancer effect of nobiletin on nonsolid tumor remains unclear. Herein, the molecular mechanisms by which nobiletin exerts its anticancer effects on acute myeloid leukemia (AML) cells were investigated. The results showed that nobiletin suppressed cell proliferation in various types of AML cell lines. Moreover, nobiletin induced cell-cycle arrest of HL-60 AML cells at the G0/G1 phase by suppressing extracellular signal-regulated kinase (ERK) activity. Furthermore, nobiletin effectively induced apoptosis of HL-60 cells through caspase-8, caspase-9, and caspases-3 activation concomitantly with a marked induction of p38 mitogen-activated protein kinase (MAPK) activation, but without affecting expression levels of Bcl-2, Bax, or Bid. Taken together, our results suggest that nobiletin inhibited HL-60 cell proliferation through inducing cell-cycle arrest and apoptosis and could serve as a potential additional chemotherapeutic agent for treating AML.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hsiao PC, Hsieh YH, Chow JM, Yang SF, Hsiao M, Hua KT, Lin CH, Chen HY, Chien MH. Hispolon induces apoptosis through JNK1/2-mediated activation of a caspase-8, -9, and -3-dependent pathway in acute myeloid leukemia (AML) cells and inhibits AML xenograft tumor growth in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10063-73. [PMID: 24093560 DOI: 10.1021/jf402956m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hispolon is an active phenolic compound of Phellinus igniarius, a mushroom that was recently shown to have antioxidant and anticancer activities in various solid tumors. Here, the molecular mechanisms by which hispolon exerts anticancer effects in acute myeloid leukemia (AML) cells was investigated. The results showed that hispolon suppressed cell proliferation in the various AML cell lines. Furthermore, hispolon effectively induced apoptosis of HL-60 AML cells through caspases-8, -9, and -3 activations and PARP cleavage. Moreover, treatment of HL-60 cells with hispolon induced sustained activation of JNK1/2, and inhibition of JNK by JNK1/2 inhibitor or JNK1/2-specific siRNA significantly abolished the hispolon-induced activation of the caspase-8/-9/-3. In vivo, hispolon significantly reduced tumor growth in mice with HL-60 tumor xenografts. In hispolon-treated tumors, activation of caspase-3 and a decrease in Ki67-positive cells were observed. Our results indicated that hispolon may have the potential to serve as a therapeutic tool to treat AML.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, ‡Institute of Biochemistry and Biotechnology, and §Institute of Medicine, Chung Shan Medical University , No. 110, Section 1, Chien-Kuo N Road, Taichung 40201, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bielitza M, Pietruszka J. Psymberin - biologische Eigenschaften und Ansätze zu Total- und Analogasynthesen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Bielitza M, Pietruszka J. The psymberin story--biological properties and approaches towards total and analogue syntheses. Angew Chem Int Ed Engl 2013; 52:10960-85. [PMID: 24105772 DOI: 10.1002/anie.201301259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 11/06/2022]
Abstract
Psymberin is a marine natural product which has attracted a great deal of interest since its isolation: While the highly cytotoxic compound was detected early on as an ingredient in a marine sponge, it took over a decade and 600 additional samples for the structure to eventually be assigned. In the last eight years fascinating synthetic and biosynthetic investigations have led to a more detailed understanding as well as a new starting point for structure-activity studies towards new antitumor compounds. The Review gives an in-depth insight into the progress in the field of the marine polyketide psymberin and demonstrates how organic synthesis is influencing neighboring scientific subjects.
Collapse
Affiliation(s)
- Max Bielitza
- Institut für Bioorganische Chemie der Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, 52426 Jülich (Germany) http://www.iboc.uni-duesseldorf.de.
| | | |
Collapse
|
22
|
An C, Jurica JA, Walsh SP, Hoye AT, Smith AB. Total synthesis of (+)-irciniastatin A (a.k.a. psymberin) and (-)-irciniastatin B. J Org Chem 2013; 78:4278-96. [PMID: 23510264 DOI: 10.1021/jo400260m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified synthetic strategy to access (+)-irciniastatin A (a.k.a. psymberin) and (-)-irciniastatin B, two cytotoxic secondary metabolites, has been achieved. Highlights of the convergent strategy comprise a boron-mediated aldol union to set the C(15)-C(17) syn-syn triad, reagent control to set the four stereocenters of the tetrahydropyran core, and a late-stage Curtius rearrangement to install the acid-sensitive stereogenic N,O-aminal. Having achieved the total synthesis of (+)-irciniastatin A, we devised an improved synthetic route to the tetrahydropyran core (13 steps) compared to the first-generation synthesis (22 steps). Construction of the structurally similar (-)-irciniastatin B was then achieved via modification of a late-stage (-)-irciniastatin A intermediate to implement a chemoselective deprotection/oxidation sequence to access the requisite oxidation state at C(11) of the tetrahydropyran core. Of particular significance, the unified strategy will permit late-stage diversification for analogue development, designed to explore the biological role of substitution at the C(11) position of these highly potent tumor cell growth inhibitory molecules.
Collapse
Affiliation(s)
- Chihui An
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
23
|
|
24
|
An C, Hoye AT, Smith AB. Total synthesis of (-)-irciniastatin B and structural confirmation via chemical conversion to (+)-irciniastatin A (psymberin). Org Lett 2012; 14:4350-3. [PMID: 22892009 PMCID: PMC3438514 DOI: 10.1021/ol301783p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis and structural confirmation of the marine sponge cytotoxin (-)-irciniastatin B has been achieved via a unified strategy employing a late-stage, selective deprotection/oxidation sequence that provides access to both (+)-irciniastatin A (psymberin) and (-)-irciniastatin B.
Collapse
Affiliation(s)
- Chihui An
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Adam T. Hoye
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amos B. Smith
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
25
|
Mosey RA, Floreancig PE. Isolation, biological activity, synthesis, and medicinal chemistry of the pederin/mycalamide family of natural products. Nat Prod Rep 2012; 29:980-95. [PMID: 22772477 DOI: 10.1039/c2np20052j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the broad range of science that has arisen from the isolation of pederin, the mycalamides, theopederins, and onnamides, and psymberin. Specific topics include structure determination, biological activity, synthesis, and analog preparation and analysis.
Collapse
Affiliation(s)
- R Adam Mosey
- Department of Chemistry, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
26
|
Wan S, Wu F, Rech JC, Green ME, Balachandran R, Horne WS, Day BW, Floreancig PE. Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs. J Am Chem Soc 2011; 133:16668-79. [PMID: 21902245 DOI: 10.1021/ja207331m] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent cytotoxins pederin and psymberin have been prepared through concise synthetic routes (10 and 14 steps in the longest linear sequences, respectively) that proceed via a late-stage multicomponent approach to construct the N-acyl aminal linkages. This route allowed for the facile preparation of a number of analogs that were designed to explore the importance of the alkoxy group in the N-acyl aminal and functional groups in the two major subunits on biological activity. These analogs, including a pederin/psymberin chimera, were analyzed for their growth inhibitory effects, revealing several new potent cytotoxins and leading to postulates regarding the molecular conformational and hydrogen bonding patterns that are required for biological activity. Second generation analogs have been prepared based on the results of the initial assays and a structure-based model for the binding of these compounds to the ribosome. The growth inhibitory properties of these compounds are reported. These studies show the profound role that organic chemistry in general and specifically late-stage multicomponent reactions can play in the development of unique and potent effectors for biological responses.
Collapse
Affiliation(s)
- Shuangyi Wan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Essack M, Bajic VB, Archer JA. Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment. Mar Drugs 2011; 9:1580-1606. [PMID: 22131960 PMCID: PMC3225937 DOI: 10.3390/md9091580] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 01/23/2023] Open
Abstract
Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review.
Collapse
Affiliation(s)
| | | | - John A.C. Archer
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-544-700-701; Fax: +966-(2)-802-0127
| |
Collapse
|
28
|
Cytotrienin A, a translation inhibitor that induces ectodomain shedding of TNF receptor 1 via activation of ERK and p38 MAP kinase. Eur J Pharmacol 2011; 667:113-9. [PMID: 21663740 DOI: 10.1016/j.ejphar.2011.05.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/02/2011] [Accepted: 05/22/2011] [Indexed: 12/31/2022]
Abstract
Cytotrienin A, a member of the triene-ansamycin family, was initially identified to be an inducer of apoptosis and recently shown to be an inhibitor of translation that interferes with eukaryotic elongation factor 1A function. In human lung carcinoma A549 cells, cytotrienin A was found to inhibit more strongly the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α than the expression induced by interleukin (IL)-1α. Cytotrienin A induced the ectodomain shedding of TNF receptor 1 by TNF-α-converting enzyme (TACE). The TACE inhibitor TAPI-2 antagonized the selective inhibitory effect of cytotrienin A on inhibitor of nuclear factor-κB-α (IκBα) degradation as well as ICAM-1 expression in TNF-α-stimulated cells. The MEK inhibitor U0126 and the p38 MAP kinase inhibitor SB203580, but not the JNK inhibitor SP600125, prevented the ectodomain shedding of TNF receptor 1 induced by cytotrienin A and reversed the inhibitory effects of cytotrienin A on the TNF-α-induced IκBα degradation. In the presence of both U0126 and SB203580, cytotrienin A inhibited TNF-α- and IL-1α-induced ICAM-1 expression at almost equivalent concentrations. Thus, our present results demonstrate that cytotrienin A is a translation inhibitor that triggers ribotoxic stress response and selectively inhibits the TNF-α-induced ICAM-1 expression by inducing the ectodomain shedding of TNF receptor 1 via the activation of ERK and p38 MAP kinase.
Collapse
|
29
|
Yamada Y, Tashiro E, Taketani S, Imoto M, Kataoka T. Mycotrienin II, a translation inhibitor that prevents ICAM-1 expression induced by pro-inflammatory cytokines. J Antibiot (Tokyo) 2011; 64:361-6. [DOI: 10.1038/ja.2011.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|