1
|
Wang Y, Qu D, Zhang Y, Jin Y, Feng Y, Zhang H, Xia Q. Intra-tumoral microbial community profiling and associated metabolites alterations of TNBC. Front Oncol 2023; 13:1143163. [PMID: 37901331 PMCID: PMC10602718 DOI: 10.3389/fonc.2023.1143163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC) presents significant challenges to female health owing to the lack of therapeutic targets and its poor prognosis. In recent years, in the field of molecular pathology, there has been a growing focus on the role of intra-tumoral microbial communities and metabolic alterations in tumor cells. However, the precise mechanism through which microbiota and their metabolites influence TNBC remains unclear and warrants further investigation. In this study, we analyzed the microbial community composition in various subtypes of breast cancer through 16S rRNA MiSeq sequencing of formalin-fixed, paraffin-embedded (FFPE) tissue samples. Notably, Turicibacter, a microbe associated with cancer response, exhibited a significantly higher abundance in TNBC. Similarly, mass spectrometry-based metabolomic analysis revealed substantial differences in specific metabolites, such as nutriacholic, pregnanetriol, and cortol. Furthermore, we observed significant correlations between the intra-tumoral microbiome, clinicopathological characteristics, and human epidermal growth factor receptor-2 expression(HER2). Three microbial taxa (Cytophagaceae, Conexibacteraceae, and Flavobacteriaceae) were associated with tumor-infiltrating lymphocytes(TILs), which are indicative of antitumor immunity. This study creatively utilized FFPE tissue samples to assess intra-tumoral microbial communities and their related metabolic correlations, presenting avenues for the identification of novel diagnostic biomarkers, the development of therapeutic strategies, and the early clinical diagnosis of TNBC.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| | - Dingding Qu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| | - Yali Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| | - Yiping Jin
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| | - Yu Feng
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - He Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, China
| |
Collapse
|
2
|
Lin C, Chen DR, Kuo SJ, Feng CY, Chen DR, Hsieh WC, Lin PH. Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022; 29:10732748221084196. [PMID: 35303784 PMCID: PMC8935573 DOI: 10.1177/10732748221084196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims The aim of this study was to simultaneously analyze estrogen quinone-derived adducts, including 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q), in human albumin (Alb) and hemoglobin (Hb) derived from breast cancer patients with five-year postoperative treatment without recurrence in Taiwan and to evaluate the treatment-related effects on the production of these adducts. Settings and Design Cohort Methods and Material: Blood samples derived from breast cancer 5-year survivors without recurrence were collected. Albumin and hemoglobin adducts of E2-3,4-Q and E2-2,3-Q were analyzed to evaluate the degree of disposition of estrogen to quinones and to compare these adduct levels with those in patients before treatment. Statistical Analysis All data are expressed as mean ± standard deviation of three determinations. We used Student’s t-test to examine subgroups. Data were transformed to the natural logarithm and tested for normal distribution for parametric analyses. Linear correlations were investigated between individual adduct levels by simple regression. Statistical analysis was performed using the SPSS Statistics 20.0. Results Result confirmed that logged levels of E2-2,3-Q-derived adducts correlated significantly with those of E2-3,4-Q-derived adducts (correlation coefficient r=.336-.624). Mean levels of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in 5-year survivors were reduced by 60-70% when compared to those in the breast cancer patients with less than one year of diagnosis/preoperative treatment (P<.001). Conclusions Our findings add support to the theme that hormonal therapy including aromatase inhibitors and Tamoxifen may dramatically reduce burden of estrogen quinones. We hypothesize that combination of treatment-related effects and environmental factors may modulate estrogen homeostasis and diminish the production of estrogen quinones in breast cancer patients.
Collapse
Affiliation(s)
- Che Lin
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan.,Department of Optometry, 89578Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ding-Ru Chen
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Yen Feng
- Department of Surgery, 89578Da-Chien Health Medical System, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Chung Hsieh
- Department of Laboratory Medicine, 384207Da-Chien General Hospital, Miaoli, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, 34916National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Jen HH, Kafeenah H, Chang TY, Lin YM, Shan YS, Wu CH, Chen SH. Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. J Proteome Res 2021; 20:4248-4257. [PMID: 34406011 DOI: 10.1021/acs.jproteome.1c00097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catechol estrogens (CEs) are genotoxic metabolites whose detection is challenging due to their low concentrations and high variability in the blood. By intact protein and free CE measurement of the spiked hemolysate, endogenous CEs were revealed to mainly (>99%) exist as hemoglobin (Hb) adducts in red blood cells. In order to detect endogenous CE-Hb adducts, we developed a two-step method that involved protein precipitation and solid phase extraction to purify Hb from red blood cells, and the method was coupled with proteomics using liquid chromatography-tandem mass spectrometry. Using bottom-up proteomics and standard additions, we identified C93 and C112 of Hb-β as the main adduction sites of Hb, and this accounted for CE-induced oxidization of adducted peptides by sample preparation. The non-adducted, adducted, and oxidized tryptic peptides that covered the same Hb-β sequences were targeted by parallel reaction monitoring to determine the adduction level in red blood cells. A quantification limit (S/N < 8) below the endogenous CE-Hb adduction level with relative standard errors that ranged from 5 to 22% was achieved and applied to clinical samples. The human serum albumin (HSA) adduction levels from the same patient were also determined using a previously developed method (Anal. Chem. 2019, 91, 15922-15931). A positive correlation (R2 = 0.673) between the CE-HSA and CE-Hb adduction level was obtained from all clinical samples, and both levels were significantly (p < 0.005) higher for patients with breast cancer compared to healthy controls. However, double indexes derived from the red blood cell and the serum, respectively, provide higher precision and confidence in predicting cancer risk than the single index. This study reported an efficient sample preparation for proteomics-based Hb adducts and revealed the potential of using multiple blood proteins for developing more reliable and specific markers based on protein adductomics.
Collapse
Affiliation(s)
- Hung-Hsiang Jen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Husam Kafeenah
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Yao Chang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Min Lin
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yan-Shen Shan
- Department of Surgical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Imbalances in the disposition of estrogen and naphthalene in breast cancer patients: a potential biomarker of breast cancer risk. Sci Rep 2020; 10:11773. [PMID: 32678225 PMCID: PMC7366907 DOI: 10.1038/s41598-020-68814-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Elevation of naphthoquinones and estrogen quinones, which are reactive metabolites of naphthalene and estrogen, is thought to be an important indicator of naphthalene- and estrogen-induced carcinogenesis. We compared background levels of naphthalene and estrogen quinone-derived adducts in serum albumin (Alb) from 143 women with breast cancer and 119 healthy controls. Cysteinyl adducts of naphthoquinones, including 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ), and estrogen quinones, including estrogen-2,3-quinones (E2-2,3-Q) and estrogen-3,4-quinones (E2-3,4-Q), were characterized after adduct cleavage. Levels of estrogen quinones and naphthoquinones were positively correlated in healthy controls, but not in breast cancer patients (p < 0.05). Compared with controls, levels of 1,2-NPQ and E2-3,4-Q were elevated by two- to ten-fold in cancer patients (p < 0.001). To explore the correlation between estrogen- and naphthalene-derived quinone adducts and disease status, we performed linear discriminant analysis of the ratio of 1,2-NPQ-Alb to (1,2-NPQ-Alb plus 1,4-NPQ-Alb) versus the ratio of E2-3,4-Q-2-S-Alb to (E2-2,3-Q-4-S-Alb plus E2-3,4-Q-2-S-Alb) in patients and controls. These two groups were separable using albumin adducts of estrogen quinones and naphthoquinones, with 99.6% overall correct classification rate (overall accuracy). The findings of this study suggest that differences in the disposition of estrogen and naphthalene, and the subsequent elevation of cumulative E2-3,4-Q and 1,2-NPQ may serve as biomarkers of breast cancer risk.
Collapse
|
5
|
Chen SH, Li CW. Detection and Characterization of Catechol Quinone-Derived Protein Adducts Using Biomolecular Mass Spectrometry. Front Chem 2019; 7:571. [PMID: 31497592 PMCID: PMC6712063 DOI: 10.3389/fchem.2019.00571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
The catechol quinone (CQ) motif is present in many biologically relevant molecules throughout endogenous metabolic products, foods, drugs, and environmental pollutants. The CQ derivatives may undergo Michael addition, and has been shown to yield covalent bonds with nucleophilic sites of cysteine, lysine, or histidine residue of proteins. The CQ-adducted proteins may exhibit cytotoxicity or biological functions different from their un-adducted forms. Identification, characterization, and quantification of relevant protein targets are essential but challenging goals. Mass spectrometry (MS) is well-suited for the analysis of proteins and protein modifications. Technical development of bottom-up proteomics has greatly advanced the field of biomolecular MS, including protein adductomics. This mini-review focuses on the use of biomolecular MS in (1) structural and functional characterization of CQ adduction on standards of proteins, (2) identification of endogenous adduction targets, and (3) quantification of adducted blood proteins as exposure index. The reactivity and outcome of CQ adduction are discussed with emphases on endogenous species, such as dopamine and catechol estrogens. Limitations and advancements in sample preparation, MS instrumentation, and software to facilitate protein adductomics are also discussed.
Collapse
Affiliation(s)
- Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Li
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Hemoglobin adducts as biomarkers of estrogen homeostasis: Elevation of estrogenquinones as a risk factor for developing breast cancer in Taiwanese Women. Toxicol Lett 2014; 225:386-91. [DOI: 10.1016/j.toxlet.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 11/21/2022]
|
7
|
Lin C, Chen DR, Wang SL, Hsieh WC, Yu WF, Wang TW, Tsai CH, Wei HH, Tsuang BJ, Lin PH. Cumulative body burdens of polycyclic aromatic hydrocarbons associated with estrogen bioactivation in pregnant women: protein adducts as biomarkers of exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:634-640. [PMID: 24521408 DOI: 10.1080/10934529.2014.865416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objective of this research was to simultaneously analyze protein adducts of quinonoid metabolites of naphthalene and endogenous estrogen in serum albumin (Alb) derived from healthy pregnant women in Taiwan and to explore the correlations among them. The isomeric forms of cysteinyl adducts of naphthoquinones, including 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) as well as estrogen quinones, including estrogen-2,3-quinones (E2-2,3-Q) and estrogen-3,4-quinones (E2-3,4-Q), are characterized after adduct cleavage. Results showed that the median levels of cysteinyl adducts of 1,2-NPQ and 1,4-NPQ on serum albumin were 249-390 and 16.0-24.8 pmol g(-1), respectively. Logged levels of 1,2-NPQ-Alb were correlated with logged levels of 1,4-NPQ-Alb (correlation coefficient r = 0.551, P < 0.001). Cysteinyl adducts of E2-2,3-Q-1-S-Alb, E2-2,3-Q-4-S-Alb, and E2-3,4-Q-2-S-Alb were detected in all subjects with median levels at 275-435, 162-288, and 197-254 pmol g(-1), respectively. We also found a positive relationship between logged levels of E2-2,3-Q-4-S-Alb and those of E2-3,4-Q-2-S-Alb (r = 0.770, P < 0.001).We noticed that median levels of E2-2,3-Q-derived adducts (E2-2,3-Q-1-S-Alb plus E2-2,3-Q-4-S-Alb) in pregnant women were greater than those of E2-3,4-Q-2-S-Alb (∼2-3-fold). Taken together, this evidence lends further support to the theme that cumulative concentration of E2-3,4-Q is a significant predictor of the risk of breast cancer. Furthermore, we noticed that levels of 1,2-NPQ-Alb are positively associated with levels of E2-3,4-Q-2-S-Alb (r = 0.522, P < 0.001) and those of E2-2,3-Q-4-S-Alb (r = 0.484, P < 0.001). Overall, this evidence suggests that environmental exposure to polycyclic aromatic hydrocarbons may modulate estrogen homeostasis and enhance the production of reactive quinone species of endogenous estrogen in humans.
Collapse
Affiliation(s)
- Che Lin
- a Comprehensive Breast Cancer Center, Changhua Christian Hospital , Changhua , Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers. Toxicol Lett 2013; 218:194-9. [DOI: 10.1016/j.toxlet.2013.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 11/22/2022]
|
9
|
Snelten CS, Dietz B, Bolton JL. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women's Health. ACTA ACUST UNITED AC 2012; 9. [PMID: 24223609 DOI: 10.1016/j.ddmec.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism.
Collapse
Affiliation(s)
- Courtney S Snelten
- Department of Medicinal Chemistry and Pharmacognosy and UIC/NIH Center for Botanical Dietary Supplements Research in Women's Health, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, M/C 781, Chicago, Illinois, 60612-7231
| | | | | |
Collapse
|