1
|
Wang Y, Huang M, Du X, Hong Y, Huang L, Dai Y, Wu Q, Wang F, Zhu Q. Renal tubular cell necroptosis: A novel mechanism of kidney damage in trichloroethylene hypersensitivity syndrome mice. J Immunotoxicol 2021; 18:173-182. [PMID: 34788186 DOI: 10.1080/1547691x.2021.2003486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trichloroethylene (TCE) hypersensitivity syndrome (THS), called occupational medicamentosa-like dermatitis due to TCE (OMDT) in China, is a fatal occupational disorder caused by TCE exposure. Visceral damage, including kidney injury, is one of the major complications. Necroptosis is a regulated cell death form linked to local inflammatory response. This study aimed to investigate whether renal cell necroptosis was involved in TCE-induced kidney injury. A Balb/c mouse model of TCE sensitization was utilized to study mechanisms of modulation of TCE-induced renal necroptosis. Renal histology (using light and transmission electron microscopy) and renal tubular impairment indexes, including α1-microglobulin (α1-MG), and β2-microglobulin (β2-MG), were evaluated. In addition, tissue expression of necroptosis-related proteins, including tumor necrosis factor (TNF)-α, TNF receptor 1 (TNFR1), receptor-interacting protein kinase 3 (RIPK3), p-RIK3, mixed lineage kinase domain-like protein (MLKL), and p-MLKL, were also evaluated. The study here confirmed TCE sensitization caused damage to renal tubules and renal tubular epithelial cell (RTEC) necroptosis. In mice treated with R7050 (a specific TNFα antagonist), it was also seen that inhibition of TNFα expression could effectively inhibit RTEC necroptosis and improve renal function in the TCE-sensitized mice. Taken together, these results help to define a novel mechanism by which RTEC necroptosis plays a key role in TCE-induced kidney damage.
Collapse
Affiliation(s)
- Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xin Du
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Yuying Dai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qifeng Wu
- Poison Control Center, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, PR China
| | - Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.,Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
2
|
Dihydro-stilbene gigantol relieves CCl 4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin 2020; 41:1433-1445. [PMID: 32404983 DOI: 10.1038/s41401-020-0406-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
In general, anti-inflammatory treatment is considered for multiple liver diseases despite the etiology. But current drugs for alleviating liver inflammation have defects, making it necessary to develop more potent and safer drugs for liver injury. In this study, we screened a series of (dihydro-)stilbene or (dihydro-)phenanthrene derivatives extracted from Pholidota chinensis for their potential biological activities. Among 31 compounds, the dihydro-stilbene gigantol exerted most potent protective effects on human hepatocytes against lithocholic acid toxicity, and exhibited solid antioxidative and anti-inflammatory effect in vitro. In mice with CCl4-induced acute liver injury, pre-administration of gigantol (10, 20, 40 mg· kg-1· d-1, po, for 7 days) dose-dependently decreased serum transaminase levels and improved pathological changes in liver tissues. The elevated lipid peroxidation and inflammatory responses in the livers were also significantly alleviated by gigantol. The pharmacokinetic studies showed that gigantol was highly concentrated in the mouse livers, which consisted with its efficacy in preventing liver injury. Using a label-free quantitative proteomic analysis we revealed that gigantol mainly regulated the immune system process in liver tissues of CCl4-treated mice, and the complement and coagulation cascades was the predominant pathway; gigantol markedly inhibited the expression of complement component C9, which was a key component for the formation of terminal complement complex (TCC) C5b-9. These results were validated by immunohistochemistry (IHC) or real time-PCR. Confocal microscopy analysis showed that gigantol significantly inhibited the vascular deposition of TCC in the liver. In conclusion, we demonstrate for the first time that oral administration of gigantol potently relieves liver oxidative stress and inflammation, possibly via a novel mechanism of inhibiting the C5b-9 formation in the liver.
Collapse
|
3
|
Wang G, Zhang J, Dai Y, Xu Q, Zhu Q. Local renal complement activation mediates immune kidney injury by inducing endothelin-1 signalling and inflammation in trichloroethylene-sensitised mice. Toxicol Lett 2020; 333:130-139. [PMID: 32763311 DOI: 10.1016/j.toxlet.2020.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial solvent that causes trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including kidney injury. Clinical studies have shown that the complement system is important for TCE-induced kidney injury. Our previous study found excessive deposition of complement C3, mainly on the glomerulus, indicating that local renal complement is activated after TCE sensitisation. However, whether local renal complement activation mediates TCE-induced immune kidney injury and the underlying mechanisms remain unknown. Therefore, we established a TCE percutaneous sensitisation BALB/c mouse model to explore the mechanisms by pretreating with or without the complement activation antagonist, cathepsin L inhibitor (CatLi). As expected, more C3 and C3a were detected mainly on glomerulus of TCE positive sensitisation (TCE+) mice. Renal dysfunction and pathological damage were also clearly observed in TCE+ mice. Moreover, the mRNA and protein expression of ET-1 increased significantly with local renal complement activation after TCE sensitisation, leading to cytokines release and inflammation. In addition, activation of p38MAPK and NF-κBp65 pathways were detected in kidneys of TCE+ mice, and CatLi pretreatment decreased these changes through complement activation antagonisation. Our research uncovered a novel role of local renal complement activation during immune kidney injury after TCE sensitisation through induction of ET-1 signalling and inflammation.
Collapse
Affiliation(s)
- Guoxiu Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiongying Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Zhao N, Song X, Naito H, Li H, Huang Y, Liu L, Lu F, Cai T, Ito Y, Kamijima M, Huang H, Nakajima T, Wang H. Trichloroethylene and trichloroethanol induce skin sensitization with focal hepatic necrosis in guinea pigs. J Occup Health 2020; 62:e12142. [PMID: 32799435 PMCID: PMC7428806 DOI: 10.1002/1348-9585.12142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Occupational exposure to trichloroethylene (TCE) induces trichloroethylene hypersensitivity syndrome (TCEHS), which causes hypersensitivity dermatitis and hepatitis. However, whether TCE itself or its two metabolites, trichloroethanol (TCEOH) and trichloroacetic acid (TCA), are involved in TCEHS remains unclear. Therefore, in this study we explored the allergens causing TCEHS and characterized TCEHS-related liver injury in guinea pigs. METHOD The guinea pig maximization test was performed using TCE, TCEOH, and TCA as candidate allergens. Skin inflammation was scored, and liver function and histopathological changes were evaluated by biochemical tests and hematoxylin and eosin staining, respectively. RESULTS The sensitization rates for TCE, TCEOH, and TCA were 90.0%, 50.0%, and 0.0%, respectively. In the TCE and TCEOH experimental groups, the skin showed varying degrees of erythema with eosinophil granulocyte infiltration in the dermis. Additionally, serum alanine aminotransferase and γ-glutamyl transpeptidase levels increased significantly, and histological analysis revealed focal hepatocellular necrosis with inflammatory cell infiltration in the liver. CONCLUSIONS TCE is the main cause of allergy and TCEOH is a secondary factor for allergy in guinea pigs. TCE and TCEOH can cause immune-mediated skin sensitization complicated by focal hepatic necrosis.
Collapse
Affiliation(s)
- Na Zhao
- Department of clinical laboratoryGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and TreatmentGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Xiangrong Song
- Institute of ToxicologyGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Hisao Naito
- Department of Public HealthFujita Health University School of MedicineToyoakeJapan
| | - Hongling Li
- Institute of ToxicologyGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Yongshun Huang
- Department of clinical laboratoryGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and TreatmentGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and TreatmentGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Fengrong Lu
- Institute of ToxicologyGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Tingfeng Cai
- Institute of ToxicologyGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| | - Yuki Ito
- Department of Occupational and Environmental HealthNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Michihiro Kamijima
- Department of Occupational and Environmental HealthNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and TreatmentGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
- Department of Scientific EducationGuangdong Provincial Maternal and Child Health HospitalGuangzhouChina
| | - Tamie Nakajima
- Department of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Hailan Wang
- Institute of ToxicologyGuangdong Province Hospital for Occupational Disease Prevention and TreatmentGuangzhouChina
| |
Collapse
|
5
|
Wang F, Huang LP, Yang P, Ye LP, Wu C, Zhu QX. Inflammatory kidney injury in trichloroethylene hypersensitivity syndrome mice: Possible role of C3a receptor in the accumulation of Th17 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109772. [PMID: 31614297 DOI: 10.1016/j.ecoenv.2019.109772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is a common organic solvent which can cause TCE hypersensitivity syndrome (THS) in exposure workers. THS is an adverse skin disorder with severe inflammatory kidney damage. Complement C3a receptor (C3aR) acts as a specific receptor for the key complement cleavage product C3a and involves multiple inflammatory responses, but the role of C3aR in TCE induced kidney inflammatory injury remains unknown. In this study, BALB/c mouse model of skin sensitization induced by TCE was set up in the presence or absence of C3aR antagonist (C3aRA). Kidney pathology and renal function, expression of inflammatory mediators and C3aR, changes in Th17 cell numbers, and activation of signal transducer and activator of transcription 3 (STAT3) in the kidney were examined. TCE sensitization produced histopathological and functional damage to the kidney, accompanied by increased levels of interleukin (IL-) 1β, IL-6, and IL-23. Local accumulation of Th17 cells and enhanced phosphorylation of STAT3 were also seen in the impaired kidney in TCE sensitization-positive mice. C3aR was mainly located in the impaired glomerulus and upregulated in TCE sensitization-positive mice. C3aRA pretreatment alleviated the structural and functional kidney damage and the inflammatory cytokine and Th17 responses by TCE sensitization, and specifically reduced the phosphorylation of STAT3. Together, our results demonstrate that C3aR signaling promotes the inflammatory responses and regulates the accumulation of Th17 phenotype via phosphorylation of STAT3 in TCE sensitization induced inflammatory kidney damage. C3aR may serve as a potential therapeutic target in TCE sensitization mediated kidney injury.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Li-Ping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Peng Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Ping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
6
|
Pan Y, Hou X, Meng Q, Yang X, Shang L, Wei X, Hao W. The critical role for TAK1 in trichloroethylene-induced contact hypersensitivity in vivo and in CD4 + T cell function alteration by trichloroethylene and its metabolites in vitro. Toxicol Appl Pharmacol 2019; 380:114705. [PMID: 31400415 DOI: 10.1016/j.taap.2019.114705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Occupational exposure to trichloroethylene (TCE) has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder, which is considered a delayed-type hypersensitivity reaction mediated by antigen-specific T cells. Transforming growth factor-β activated kinase-1 (TAK1) is essential for regulating the development and effector function of T cells. We hypothesized that disrupting TAK1 activity might inhibit TCE-induced CHS response. In this study, a local lymph node assay was employed to build a CHS model induced by TCE combined with the inducible-TAK1 deletion system to study the effect of TAK1 on it. It was observed that TAK1 deficiency ameliorated the TCE-induced CHS response and was associated with defective T cell expansion and activation and IFN-γ production in vivo. Furthermore, we investigated the effects of TCE and its metabolites trichloroacetic acid (TCA) and dichloroacetic acid (DCA) on CD4+ T cell function and the effect of TAK1 on it in vitro. The results showed that TCE, TCA and DCA augmented the proliferation, activation and differentiation of CD4+ T cells through Jnk MAPK and NF-κB pathways. TAK1 deletion significantly attenuated these effects induced by TCE, TCA or DCA on CD4+ T cells. In conclusion, it is suggested that TAK1 plays a critical role both in TCE-induced CHS response in vivo and in TCE and its metabolite-induced CD4+ T cell activation in vitro. Local inhibition of TAK1 might offer a promising alternative feasible strategy for TCE-induced CHS.
Collapse
Affiliation(s)
- Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China; Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xiaohua Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
7
|
Li W, Liu X, Yang X, Chen Y, Pang Y, Qi G, Chen L, Zhuang Z. Effect of trichloroacetaldehyde on the activation of CD4 +T cells in occupational medicamentosa-like dermatitis: An in vivo and in vitro study. Toxicology 2019; 423:95-104. [PMID: 31150805 DOI: 10.1016/j.tox.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023]
Abstract
Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is a hypersensitivity disease with autoimmune liver injury, which has increasingly become a serious occupational health problem in China. However, the pathogenesis of OMLDT remained undefined. In this study, 30 TCE-induced OMLDT patients, 58 exposure controls, and 40 non-exposure controls were recruited. We showed that the ratio of activated CD4+ T cells (downregulation of CD62 L) was dramatically increased in OMLDT patients compared to exposure and non-exposure control, suggesting that CD4+ T cells activation was a key cellular event in the development of OMLDT. In parallel, the expression of cytokine including IL-2, IFN-γ, TNF-α and IL-17A were increased obviously and IL-4 decreased in CD4+ T cells from OMLDT patients. in vitro assay, we found that trichloroethylene metabolites trichloroacetaldehyde (TCAH), not trichloroacetic acid (TCA) or Trichloroethanol (TCOH) could activate the naïve CD4+ T cells characterized by a rise in intracellular calcium, down-regulated CD62 L and subsequently trigger the secretion of IL-2, IFN-γ and TNF-α. Notably, the phosphorylation status of NF-κB and p38MAPK were elevated in OMLDT patients. Moreover, TCAH also could activate the p38MAPK and NF-κB, suggesting the role of p38MAPK and NF-κB pathways in the activation of CD4+ T cells. In addition, we found that the inhibition of Schiff base formation decreased the ability of TCAH to induce the activation of naïve CD4+ T cells and p38MAPK and NF-κB pathway. In conclusion, we revealed that the CD4+ T activation and increased the cytokines including IL-2, IFN-γ and TNF-α but decreased IL-4 in CD4+ T cells were associated with OMLDT. TCAH could activate naïve CD4+ T cells through NF-κB and p38MAPK activation induced by Schiff base formation, which might contribute to the development of OMLDT. These findings provide a new insight into the pathogenesis of OMLDT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Xiaoling Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xueqin Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Yaping Chen
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Yaqin Pang
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi, China
| | - Guangzi Qi
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhixiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Wang X, Yu Y, Xie HB, Shen T, Zhu QX. Complement regulatory protein CD59a plays a protective role in immune liver injury of trichloroethylene-sensitized BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:105-113. [PMID: 30685621 DOI: 10.1016/j.ecoenv.2019.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Trichloroethylene (TCE) is a major occupational and environmental chemical compound which causes occupational dermatitis medicamentosa-like of TCE with severe liver damage. Our previous studies showed that complement activation was a newly recognized mechanism for TCE-induced liver damage. The objective of this study was to explore the role of the key complement regulatory protein, CD59a, in TCE-induced immune liver injury. We firstly evaluated the changes of CD59a expression in liver tissue and then investigated if the changes were associated with membrane attack complex (MAC) formation, nuclear factor kappa B (NF-κB) activation and liver damage in BALB/c mice model of TCE-induced skin sensitization in the absence or presence of soluble recombinant rat CD59-Cys. The results showed that low expression of CD59a accompanied by MAC deposition in the liver of TCE-sensitized BALB/c mice, which was consistent in time. In addition, activation of NF-κB pathway, upregulation of inflammatory cytokine and liver damage also occured. Additional experiment showed that recombinant rat sCD59-Cys alleviated inflammation and liver damage in TCE-sensitized BALB/c mice. Moreover, recombinant rat sCD59-Cys reduced MAC formation and inhibited NF-κB activation measured by P-IκBα and nuclear NF-κB p65 in the liver of TCE-sensitized BALB/c mice. In conclusion, recombinant rat sCD59-Cys plays a protective role in immune liver injury of TCE-sensitized BALB/c mice.
Collapse
Affiliation(s)
- Xian Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yun Yu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Hai-Bo Xie
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
9
|
Li B, Xie H, Wang X, Yang X, Yang L, Zhang J, Wang F, Shen T, Zhu Q. Oxidative stress mediates renal endothelial cell damage in trichloroethylene-sensitized mice. J Toxicol Sci 2019; 44:317-326. [PMID: 31068537 DOI: 10.2131/jts.44.317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bodong Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Haibo Xie
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Xian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Xiaodong Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Ling Yang
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Feng Wang
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Qixing Zhu
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
- Key Laboratory of Dermatology, Ministry of Education, China
| |
Collapse
|
10
|
Liu M, Wang H, Zhang J, Yang X, Li B, Wu C, Zhu Q. NF-κB signaling pathway-enhanced complement activation mediates renal injury in trichloroethylene-sensitized mice. J Immunotoxicol 2018. [PMID: 29534626 DOI: 10.1080/1547691x.2017.1420712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both NF-κB pathway and complement activation appear to be involved in kidney damage induced by trichloroethylene (TCE). However, any relationship between these two systems has not yet been established. The present study aimed to clarify the role of NF-κB in complement activation and renal injury in TCE-sensitized BALB/c mice. Mice were sensitized by an initial subcutaneous injection and repeated focal applications of TCE to dorsal skin at specified timepoints. NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) was injected (intraperitoneal) before the final two focal TCE challenges. In the experiments, mice had their blood and kidneys collected. Kidney function was evaluated via blood urea nitrogen (BUN) and creatinine (Cr) content; renal histology was examined using transmission electron microscopy (TEM). Kidney levels of phospho-p65 were assessed by Western blot and kidney mRNA levels of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor (TNF)-α, and p65 by real-time quantitative PCR. Presence of C3 and C5b-9 membrane attack complexes in the kidneys was evaluated via immunohistochemistry. The results showed there was significant swelling, vacuolar degeneration in mitochondria, shrinkage of microvilli, disappearance of brush borders, segmental foot process fusion, and glomerular basement membrane thickening (or disrobing) in kidneys from TCE-sensitized mice. In conjunction with these changes, serum BUN and Cr levels were increased and IL-1β, IL-6, IL-17, and TNFα mRNA levels were elevated. Levels of p65 and phospho-p65 protein were also up-regulated, and there was significant C3 and C5b-9 deposition. PDTC pretreatment attenuated TCE-induced up-regulation of p65 and its phosphorylation, complement deposition, cytokine release, and renal damage. These results provide the first evidence that NF-κB pathway has an important role in TCE-induced renal damage mediated by enhanced complement activation in situ.
Collapse
Affiliation(s)
- Min Liu
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Hui Wang
- b Department of Nutrition , Chaohu Hospital of Anhui Medical University , Hefei , Anhui , China.,c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| | - Jiaxiang Zhang
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China.,c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| | - Xiaodong Yang
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Bodong Li
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Changhao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Qixing Zhu
- c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
11
|
Zhang C, Yu Y, Yu JF, Li BD, Zhou CF, Yang XD, Wang X, Wu C, Shen T, Zhu QX. Viral mimic polyinosine-polycytidylic acid potentiates liver injury in trichloroethylene-sensitized mice - Viral-chemical interaction as a novel mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:101-108. [PMID: 29510304 DOI: 10.1016/j.ecoenv.2018.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Occupational trichloroethylene (TCE) exposure can induce hypersensitivity dermatitis and severe liver injury. Recently, several clinical investigations indicate that viral infection, such as human herpesvirus-6, is associated with hepatic dysfunction in patients with TCE-related generalized skin disorders. However, whether viral infection potentiates TCE-induced liver injury remains unknown. This study aimed to explore the contribution of viral infection to the development of TCE-sensitization-induced liver injury in BALB/c mice. Female BALB/c mice were randomly assigned into four groups: solvent control group (n = 20), TCE group (n = 80), poly(I:C) group (n = 20) and combination of TCE and poly(I:C) (poly(I:C)+TCE) group (n = 80). Poly(I:C) (50 μg) was i.p. administrated. TCE and poly(I:C)+TCE groups were further divided into sensitization and non-sensitization subgroup. Complement 3 and C3a protein levels, and complement factors were measured. Combination treatment significantly enhanced TCE-induced liver injury, decreased complement 3, but increased C3a in serum and liver tissues in sensitization group. These changes were not correlated with the hepatic complement 3 transcription. Moreover, combination treatment specifically promoted complement factor B, but not factor D and factor H expressions. These data provide first evidence that poly(I:C) potentiates liver injury in BALB/c mouse model of TCE-sensitization. Upregulated C3a and factor B contributes to the poly(I:C) action in TCE-induced liver injury. This new mode of action may explain increased risk of chemical-sensitization induced tissue damage by viral infection.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yun Yu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun-Feng Yu
- Institute of Dermatology, the Fifth Affiliated Hospital of Xinjiang Medical University, 118 Henan Road, Urumchi, Xinjiang, China
| | - Bo-Dong Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng-Fan Zhou
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiao-Dong Yang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xian Wang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Tong Shen
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qi-Xing Zhu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
12
|
Xueqin Y, Wenxue L, Peimao L, Wen Z, Xianqing H, Zhixiong Z. Cytokine expression and cytokine-based T-cell profiling in occupational medicamentosa-like dermatitis due to trichloroethylene. Toxicol Lett 2018; 288:129-135. [DOI: 10.1016/j.toxlet.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022]
|
13
|
Role of selective blocking of bradykinin B1 receptor in attenuating immune liver injury in trichloroethylene-sensitized mice. Cytokine 2018; 108:71-81. [PMID: 29579546 DOI: 10.1016/j.cyto.2018.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
Trichloroethylene (TCE) is able to induce trichloroethylene hypersensitivity syndrome (THS) with multi-system immune injuries. In our previous study, we found kallikrein-kinin system (KKS) activation, including the bradykinin B1 receptor (B1R), which contributed to immune organ injury in TCE sensitized mice. However, the mechanism of B1R mediating immune dysfunction is not clarified. The present study initiates to investigate the potential mechanism of B1R on liver injury. We establish a TCE sensitized BALB/c mouse model to explore the mechanism with or without a B1R inhibitor R715. We found B1R expression was increased in TCE sensitization-positive mice. As expect, hepatocyte intracellular organelles and mitochondria disappeared, glycogen particles reduced significantly as well in TCE sensitization-positive mice via the transmission electron microscopic examination, meanwhile, R715 alleviated the deteriorate above. The blockade of B1R resulted in a significant decreased p-ERK1/2 and increased p-AKT expression. The expression of CD68 kupffer cell and its relative cytokine, including IL-6 and TNF-α, increased in TCE sensitization-positive mice and decreased in R715 pretreatment TCE sensitization-positive mice. Together, the results demonstrate B1R plays a key role in ERK/MAPK and PI3K/AKT signal pathway activation and inflammation cytokine expression in immune liver injury induced by TCE. B1R exerts a pivotal role in the development of TCE induced liver injury.
Collapse
|
14
|
Li SL, Yu Y, Yang P, Wang H, Zhang C, Liu M, Zhang JX, Shen T, Wu C, Zhu QX. Trichloroethylene Alters Th1/Th2/Th17/Treg Paradigm in Mice: A Novel Mechanism for Chemically Induced Autoimmunity. Int J Toxicol 2018; 37:155-163. [PMID: 29554824 DOI: 10.1177/1091581818757036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The role of environmental factors in autoimmune diseases has been increasingly recognized. While major advance has been made in understanding biological pathogen-induced autoimmune diseases, chemically triggered autoimmunity is poorly understood. Trichloroethylene (TCE), a common environmental pollutant, has recently been shown to induce autoimmunity. This study explored whether TCE could cause imbalance of T helper (Th) cell subsets which would contribute to the pathogenesis of TCE-induced medicamentosa-like dermatitis. BALB/c mice were treated with TCE via drinking water at doses of 2.5 or 5.0 mg/mL for 2, 4, 8, 12, and 16 weeks. Trichloroethylene exposure caused time- and dose-dependent increase in Th1, Th2, and Th17 and decrease in regulatory cell (Treg) in the spleen at 2, 4, 8, 12, and 16 weeks, with greatest changes mainly at 4 weeks. These effects were mirrored by similar changes in the expression of their corresponding cytokines interferon-γ, interleukin 4 (IL-4), IL-17A, and IL-10. Mechanistically, these phenotypic changes were accounted for by alterations to their respective master transcription factors T-box expressed in T cells, GATA-binding protein 3, Retinoic acid-related orphan receptor ct (RORct), and forkhead box P3. Of interest, TCE treatment shifted the ratios of Th1/Th2 and Th17/Treg; specifically, TCE increased Th17/Treg. These findings provide the first evidence that TCE exposure significantly changes the Th1/Th2/Th17/Treg paradigm and their specific cytokines driven by altered master transcription factors. This may promote autoimmune reactions in the pathogenesis of TCE-induced skin sensitization and associated damage to other tissues.
Collapse
Affiliation(s)
- Shu-Long Li
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 2 Center for Scientific Research, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yun Yu
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Peng Yang
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hui Wang
- 4 Department of Nutrition, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Zhang
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Min Liu
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia-Xiang Zhang
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Tong Shen
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Changhao Wu
- 5 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qi-Xing Zhu
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
15
|
Zhang JX, Li N, Wang H, Shen T, Zhu QX. The immune response in trichloroethylene hypersensitivity syndrome: A review. Toxicol Ind Health 2017; 33:876-883. [PMID: 29020883 DOI: 10.1177/0748233717731213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Trichloroethylene (TCE) has been used for a variety of industrial and consumer cleaning purposes because of its ability to dissolve organic substances. The multisystem injuries include those of skin, liver, and kidney, which are defined as TCE hypersensitivity syndrome (THS). THS is a serious occupational health issue. However, the mechanism of immune dysfunction leading to organ injury is poorly understood. Many studies reveal that skin lesions and organ injury caused by TCE are consistent with type IV hypersensitivity, also called delayed hypersensitivity, mediated by T cells. However, many researchers found T cell-mediated type IV hypersensitivity could not account for the pathogenesis of THS fully. Humoral immunity, including immunoglobulins and complement activation, may also play a possible role in THS pathogenesis. This review will describe the history, current understanding, and future research directions of the mechanism of THS.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China.,2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Na Li
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Hui Wang
- 3 Department of Nutrition, Chaohu Hospital of Anhui Medical University, Anhui, China
| | - Tong Shen
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Qi-Xing Zhu
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China
| |
Collapse
|
16
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
17
|
Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4(+) T cell responses through TLR4 ligation. Sci Rep 2016; 6:25064. [PMID: 27118638 PMCID: PMC4846868 DOI: 10.1038/srep25064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
Current acellular pertussis (aP) vaccines promote a T helper 2 (Th2)-dominated response, while Th1/Th17 cells are protective. As our previous study showed, after adding a non-toxic TLR4 ligand, LpxL1, to the aP vaccine in mice, the Bordetella pertussis-specific Th2 response is decreased and Th1/Th17 responses are increased as measured at the cytokine protein level. However, how this shift in Th response by LpxL1 addition is regulated at the gene expression level remains unclear. Transcriptomics analysis was performed on purified CD4(+) T cells of control and vaccinated mice after in vitro restimulation with aP vaccine antigens. Multiple key factors in Th differentiation, including transcription factors, cytokines, and receptors, were identified within the differentially expressed genes. Upregulation of Th2- and downregulation of follicular helper T cell-associated genes were found in the CD4(+) T cells of both aP- and aP+LpxL1-vaccinated mice. Genes exclusively upregulated in CD4(+) T cells of aP+LpxL1-vaccinated mice included Th1 and Th17 signature cytokine genes Ifng and Il17a respectively. Overall, our study indicates that after addition of LpxL1 to the aP vaccine the Th2 component is not downregulated at the gene expression level. Rather an increase in expression of Th1- and Th17-associated genes caused the shift in Th subset outcome.
Collapse
|
18
|
Wang H, Zhang JX, Ye LP, Li SL, Wang F, Zha WS, Shen T, Wu C, Zhu QX. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice. J Immunotoxicol 2016; 13:567-79. [PMID: 27027470 DOI: 10.3109/1547691x.2016.1142019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.
Collapse
Affiliation(s)
- Hui Wang
- a Department of Nutrition , Chaohu Hospital of Anhui Medical University , Anhui , PR China
| | - Jia-Xiang Zhang
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Liang-Ping Ye
- c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| | - Shu-Long Li
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Feng Wang
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Wan-Sheng Zha
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China
| | - Tong Shen
- b Department of Occupational Health and Environment Health, School of Public Health , Anhui Medical University , Anhui , PR China ;,c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| | - Changhao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Qi-Xing Zhu
- c Institute of Dermatology , Anhui Medical University , Anhui , PR China
| |
Collapse
|
19
|
Wang H, Zhang JX, Li SL, Wang F, Zha WS, Shen T, Wu C, Zhu QX. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice. Int J Toxicol 2015; 34:442-53. [DOI: 10.1177/1091581815591222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jia-xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shu-long Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Feng Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wan-sheng Zha
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qi-xing Zhu
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
20
|
Zhang JX, Zha WS, Ye LP, Wang F, Wang H, Shen T, Wu CH, Zhu QX. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice. J Appl Toxicol 2015; 36:271-84. [DOI: 10.1002/jat.3179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Jia-xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health; Anhui Medical University; Hefei Anhui China
| | - Wan-sheng Zha
- Anhui NO.2 Province People's Hospital; Hefei Anhui China
| | - Liang-ping Ye
- Institute of Dermatology; Anhui Medical University; 81 Meishan Road Hefei Anhui China
| | - Feng Wang
- Department of Occupational Health and Environment Health, School of Public Health; Anhui Medical University; Hefei Anhui China
| | - Hui Wang
- Department of Occupational Health and Environment Health, School of Public Health; Anhui Medical University; Hefei Anhui China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health; Anhui Medical University; Hefei Anhui China
- Institute of Dermatology; Anhui Medical University; 81 Meishan Road Hefei Anhui China
| | - Chang-hao Wu
- Faculty of Health and Medical Sciences; University of Surrey; Guildford UK
| | - Qi-xing Zhu
- Institute of Dermatology; Anhui Medical University; 81 Meishan Road Hefei Anhui China
| |
Collapse
|