1
|
Kelada MN, Elagawany A, El Sekily NM, El Mallah M, Abou Nazel MW. Protective Effect of Platelet-Rich Plasma on Cisplatin-Induced Nephrotoxicity in Adult Male Albino Rats: Histological and Immunohistochemical Study. Biol Trace Elem Res 2024; 202:1067-1083. [PMID: 37420147 PMCID: PMC10803452 DOI: 10.1007/s12011-023-03742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Cisplatin is a potent antineoplastic drug that is used for treatment of many solid tumors. It has a wide range of adverse effects. Nephrotoxicity is the most common one of them. Platelet-rich plasma (PRP) is an autologous human plasma that activates the tissue regeneration through cell proliferation and differentiation. Study the role of PRP in amelioration of cisplatin-induced nephrotoxicity on the kidney of adult male albino rats by biochemical, morphometric, histological, and immunohistochemical studies. Thirty-five adult male albino rats were used. Thirty rats were included as experimental group and five were used to obtain the PRP. The experimental group was classified into as follows: control group which received 1mL of sterile saline by intraperitoneal injection (IP), cisplatin-treated group which received cisplatin 7.5 mg/kg IP in a single dose and cisplatin and PRP-treated group rats received cisplatin 7.5 mg/kg single IP dose followed by 1ml of PRP IP after 24 h of cisplatin injection. There was a significant increase in urea and creatinine levels in cisplatin-treated group in comparison to the control and the PRP groups. The kidneys of cisplatin-treated group showed distorted renal structure, where specimens of PRP-treated group revealed restoration of the classical appearance of the renal tissue similar to the control group. PRP has protective effects on renal structure and functions and it helps to ameliorate the histological changes induced by cisplatin.
Collapse
Affiliation(s)
- Melad N Kelada
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Amany Elagawany
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Nancy Mohamed El Sekily
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mona El Mallah
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Maha W Abou Nazel
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Tan K, Jäger C, Geissler S, Schlenzig D, Buchholz M, Ramsbeck D. Synthesis and structure-activity relationships of pyrazole-based inhibitors of meprin α and β. J Enzyme Inhib Med Chem 2023; 38:2165648. [PMID: 36661029 PMCID: PMC9870012 DOI: 10.1080/14756366.2023.2165648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Targeting metalloproteinases has been in the focus of drug design for a long time. However, meprin α and β emerged as potential drug targets just recently and are linked to several diseases with different pathological background. Nevertheless, the validation of meprins as suitable drug targets still requires highly potent and selective inhibitors as chemical probes to elucidate their role in pathophysiology. Albeit highly selective inhibitors of meprin β have already been reported, only inhibitors of meprin α with modest activity or selectivity are known. Starting from recently reported heteroaromatic scaffolds, the aim of this study was the optimisation of meprin α and/or meprin β inhibition while keeping the favourable off-target inhibition profile over other metalloproteases. We report potent pan-meprin inhibitors as well as highly active inhibitors of meprin α with superior selectivity over meprin β. The latter are suitable to serve as chemical probes and enable further target validation.
Collapse
Affiliation(s)
- Kathrin Tan
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | | | - Stefanie Geissler
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Dagmar Schlenzig
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany,CONTACT Daniel Ramsbeck Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
3
|
Li W, Lückstädt W, Wöhner B, Bub S, Schulz A, Socher E, Arnold P. Structural and functional properties of meprin β metalloproteinase with regard to cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119136. [PMID: 34626678 DOI: 10.1016/j.bbamcr.2021.119136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
The metalloproteinase meprin β plays an important role during collagen I deposition in the skin, mucus detachment in the small intestine and also regulates the abundance of different cell surface proteins such as the interleukin-6 receptor (IL-6R), the triggering receptor expressed on myeloid cells 2 (TREM2), the cluster of differentiation 99 (CD99), the amyloid precursor protein (APP) and the cluster of differentiation 109 (CD109). With that, regulatory mechanisms that control meprin β activity and regulate its release from the cell surface to enable access to distant substrates are increasingly important. Here, we will summarize factors that alternate meprin β activity and thereby regulate its proteolytic activity on the cell surface or in the supernatant. We will also discuss cleavage of the IL-6R and TREM2 on the cell surface and compare it to CD109. CD109, as a substrate of meprin β, is cleaved within the protein core, thereby releasing defined fragments from the cell surface. At last, we will also summarize the role of proteases in general and meprin β in particular in substrate release on extracellular vesicles.
Collapse
Affiliation(s)
- Wenjia Li
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wiebke Lückstädt
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Birte Wöhner
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Simon Bub
- Department of Molecular-Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Antonia Schulz
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Strelnikov VV, Kuznetsova EB, Tanas AS, Rudenko VV, Kalinkin AI, Poddubskaya EV, Kekeeva TV, Chesnokova GG, Trotsenko ID, Larin SS, Kutsev SI, Zaletaev DV, Nemtsova MV, Simonova OA. Abnormal promoter DNA hypermethylation of the integrin, nidogen, and dystroglycan genes in breast cancer. Sci Rep 2021; 11:2264. [PMID: 33500458 PMCID: PMC7838398 DOI: 10.1038/s41598-021-81851-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cell transmembrane receptors and extracellular matrix components play a pivotal role in regulating cell activity and providing for the concerted integration of cells in the tissue structures. We have assessed DNA methylation in the promoter regions of eight integrin genes, two nidogen genes, and the dystroglycan gene in normal breast tissues and breast carcinomas (BC). The protein products of these genes interact with the basement membrane proteins LAMA1, LAMA2, and LAMB1; abnormal hypermethylation of the LAMA1, LAMA2, and LAMB1 promoters in BC has been described in our previous publications. In the present study, the frequencies of abnormal promoter hypermethylation in BC were 13% for ITGA1, 31% for ITGA4, 4% for ITGA7, 39% for ITGA9, 38% for NID1, and 41% for NID2. ITGA2, ITGA3, ITGA6, ITGB1, and DAG1 promoters were nonmethylated in normal and BC samples. ITGA4, ITGA9, and NID1 promoter hypermethylation was associated with the HER2 positive tumors, and promoter hypermethylation of ITGA1, ITGA9, NID1 and NID2 was associated with a genome-wide CpG island hypermethylated BC subtype. Given that ITGA4 is not expressed in normal breast, one might suggest that its abnormal promoter hypermethylation in cancer is non-functional and is thus merely a passenger epimutation. Yet, this assumption is not supported by our finding that it is not associated with a hypermethylated BC subtype. ITGA4 acquires expression in a subset of breast carcinomas, and methylation of its promoter may be preventive against expression in some tumors. Strong association of abnormal ITGA4 hypermethylation with the HER2 positive tumors (p = 0.0025) suggests that simultaneous presence of both HER2 and integrin α4 receptors is not beneficial for tumor cells. This may imply HER2 and integrin α4 signaling pathways interactions that are yet to be discovered.
Collapse
Affiliation(s)
- Vladimir V Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.
| | - Ekaterina B Kuznetsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Alexander S Tanas
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Viktoria V Rudenko
- Molecular Genetic Diagnostics Laboratory 2, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Alexey I Kalinkin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Elena V Poddubskaya
- Clinic of Personalized Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia.,VitaMed LLC, Seslavinskaya St 10, 121309, Moscow, Russia
| | - Tatiana V Kekeeva
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Galina G Chesnokova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Ivan D Trotsenko
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St 6, 117198, Moscow, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Federal Scientific Clinical Centre of Pediatric Hematology Oncology Immunology Named After Dmitry Rogachev, Samory Mashela St 1, 117997, Moscow, Russia.,Gene Therapy Laboratory, Institute of Gene Biology, Vavilova St 34/5, 119334, Moscow, Russia
| | - Sergey I Kutsev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| | - Dmitry V Zaletaev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Marina V Nemtsova
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia.,Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St 8-2, 119991, Moscow, Russia
| | - Olga A Simonova
- Molecular Genetic Diagnostics Laboratory 2, Research Centre for Medical Genetics, Moskvorechie St 1, 115522, Moscow, Russia
| |
Collapse
|
5
|
Gooding J, Cao L, Ahmed F, Mwiza JM, Fernander M, Whitaker C, Acuff Z, McRitchie S, Sumner S, Ongeri EM. LC-MS-based metabolomics analysis to identify meprin-β-associated changes in kidney tissue from mice with STZ-induced type 1 diabetes and diabetic kidney injury. Am J Physiol Renal Physiol 2019; 317:F1034-F1046. [PMID: 31411076 PMCID: PMC6843037 DOI: 10.1152/ajprenal.00166.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
Meprin metalloproteases have been implicated in the pathophysiology of diabetic kidney disease (DKD). Single-nucleotide polymorphisms in the meprin-β gene have been associated with DKD in Pima Indians, a Native American ethnic group with an extremely high prevalence of DKD. In African American men with diabetes, urinary meprin excretion positively correlated with the severity of kidney injury. In mice, meprin activity decreased at the onset of diabetic kidney injury. Several studies have identified meprin targets in the kidney. However, it is not known how proteolytic processing of the targets by meprins impacts the metabolite milieu in kidneys. In the present study, global metabolomics analysis identified differentiating metabolites in kidney tissues from wild-type and meprin-β knockout mice with streptozotocin (STZ)-induced type 1 diabetes. Kidney tissues were harvested at 8 wk post-STZ and analyzed by hydrophilic interaction liquid chromatography ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Principal component analysis identified >200 peaks associated with diabetes. Meprin expression-associated metabolites with strong variable importance of projection scores were indoxyl sulfate, N-γ-l-glutamyl-l-aspartic acid, N-methyl-4-pyridone-3-carboxamide, inosine, and cis-5-decenedioic acid. N-methyl-4-pyridone-3-carboxamide has been previously implicated in kidney injury, and its isomers, 4-PY and 2-PY, are markers of peroxisome proliferation and inflammation that correlate with creatinine clearance and glucose tolerance. Meprin deficiency-associated differentiating metabolites with high variable importance of projection scores were cortisol, hydroxymethoxyphenylcarboxylic acid-O-sulfate, and isovaleryalanine. The data suggest that meprin-β activity enhances diabetic kidney injury in part by altering the metabolite balance in kidneys, favoring high levels of uremic toxins such as indoxyl sulfate and N-methyl-pyridone-carboxamide.
Collapse
Affiliation(s)
- Jessica Gooding
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Lei Cao
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Faihaa Ahmed
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Jean-Marie Mwiza
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Mizpha Fernander
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Courtney Whitaker
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Zach Acuff
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Susan McRitchie
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Susan Sumner
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Elimelda Moige Ongeri
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
6
|
Schäffler H, Li W, Helm O, Krüger S, Böger C, Peters F, Röcken C, Sebens S, Lucius R, Becker-Pauly C, Arnold P. The cancer-associated meprin β variant G32R provides an additional activation site and promotes cancer cell invasion. J Cell Sci 2019; 132:jcs.220665. [PMID: 31076514 DOI: 10.1242/jcs.220665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
The extracellular metalloprotease meprin β is expressed as a homodimer and is primarily membrane bound. Meprin β can be released from the cell surface by its known sheddases ADAM10 and ADAM17. Activation of pro-meprin β at the cell surface prevents its shedding, thereby stabilizing its proteolytic activity at the plasma membrane. We show that a single amino acid exchange variant (G32R) of meprin β, identified in endometrium cancer, is more active against a peptide substrate and the IL-6 receptor than wild-type meprin β. We demonstrate that the change to an arginine residue at position 32 represents an additional activation site used by furin-like proteases in the Golgi, which consequently leads to reduced shedding by ADAM17. We investigated this meprin β G32R variant to assess cell proliferation, invasion through a collagen IV matrix and outgrowth from tumor spheroids. We found that increased meprin β G32R activity at the cell surface reduces cell proliferation, but increases cell invasion.
Collapse
Affiliation(s)
| | - Wenjia Li
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Christine Böger
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Florian Peters
- Biochemical Institute, Otto-Hahn Platz 9, 24118 Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3/14, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Ralph Lucius
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| | | | - Philipp Arnold
- Anatomical Institute, Otto-Hahn Platz 8, 24118 Kiel, Germany
| |
Collapse
|
7
|
Meprin β metalloproteases associated with differential metabolite profiles in the plasma and urine of mice with type 1 diabetes and diabetic nephropathy. BMC Nephrol 2019; 20:141. [PMID: 31023251 PMCID: PMC6485094 DOI: 10.1186/s12882-019-1313-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Meprin metalloproteases are abundantly expressed in the brush border membranes of kidney proximal tubules and small intestines. Meprins are also expressed in podocytes and leukocytes (monocytes and macrophages). Meprins are implicated in the pathophysiology of diabetic nephropathy (DN) but underlying mechanisms are not fully understood. Single nucleotide polymophisms (SNPs) in the meprin β gene were associated with DKD in human subjects. Furthermore, meprin α and β double deficiency resulted in more severe kidney injury and higher mortality rates in mice with Streptozotocin (STZ)-induced type 1 diabetes. Identification of meprin substrates has provided insights on how meprins could modulate kidney injury. Meprin targets in the kidney include extracellular matrix (ECM) proteins, modulators of inflammation, and proteins involved in the protein kinase A (PKA) and PKC signaling pathways. The current study used a global metabolomics approach to determine how meprin β expression impacts the metabolite milieu in diabetes and DKD. Methods Low dose STZ was used to induce type 1 diabetes in 8-week old wild-type (WT) and meprin β knockout (βKO) mice. Blood and urine samples were obtained at 4 and 8 weeks post-STZ injection. Assays for albumin, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule − 1 (KIM-1), and cystatin C were used for biochemical assessment of kidney injury. Data for biomarkers of kidney injury utilized two-way ANOVA. Metabolomics data analysis utilized UPLC-QTOF MS and multivariate statistics. Results The number of metabolites with diabetes-associated changes in levels were significantly higher in the WT mice when compared to meprin βKO counterparts. Annotated meprin β expression-associated metabolites with strong variable importance in projection (VIP) scores play roles in lipid metabolism (LysoPC(16:1(9Z)), taurocholic acid), amino acid metabolism (indoxyl sulfate, hippuric acid), and neurotransmitter/stress hormone synthesis (cortisol, 3-methoxy-4-hydroxyphenylethylene glycolsulfate, homovanillic acid sulfate). Metabolites that associated with meprin β deficiency include; 3,5-dihydroxy-3′,4′-dimethoxy-6,7-methylenedioxyflavone 3-glucuronide, pantothenic acid, and indoxyl glucuronide (all decreased in plasma). Conclusion Taken together, the annotated metabolites suggest that meprin β impacts complications of diabetes such as DKD by altering distinct metabolite profiles. Electronic supplementary material The online version of this article (10.1186/s12882-019-1313-2) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Herzog C, Haun RS, Kaushal GP. Role of meprin metalloproteinases in cytokine processing and inflammation. Cytokine 2018; 114:18-25. [PMID: 30580156 DOI: 10.1016/j.cyto.2018.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022]
Abstract
Meprin metalloendopeptidases, comprising α and β isoforms, are widely expressed in mammalian cells and organs including kidney, intestines, lungs, skin, and bladder, and in a variety of immune cells and cancer cells. Meprins proteolytically process many inflammatory mediators, including cytokines, chemokines, and other bioactive proteins and peptides that control the function of immune cells. The knowledge of meprin-mediated processing of inflammatory mediators and other target substrates provides a pathophysiologic link for the involvement of meprins in the pathogenesis of many inflammatory disorders. Meprins are now known to play important roles in inflammatory diseases including acute kidney injury, sepsis, urinary tract infections, bladder inflammation, and inflammatory bowel disease. The proteolysis of epithelial and endothelial barriers including cell junctional proteins by meprins promotes leukocyte influx into areas of tissue damage to result in inflammation. Meprins degrade extracellular matrix proteins; this ability of meprins is implicated in the cell migration of leukocytes and the invasion of tumor cells that express meprins. Proteolytic processing and maturation of procollagens provides evidence that meprins are involved in collagen maturation and deposition in the fibrotic processes involved in the formation of keloids and hypertrophic scars and lung fibrosis. This review highlights recent progress in understanding the role of meprins in inflammatory disorders in both human and mouse models.
Collapse
Affiliation(s)
- Christian Herzog
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA
| | - Randy S Haun
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Little Rock, AR, USA
| | - Gur P Kaushal
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Biochemistry, Little Rock, AR, USA.
| |
Collapse
|
9
|
Undiagnosed Kidney Injury in Uninsured and Underinsured Diabetic African American Men and Putative Role of Meprin Metalloproteases in Diabetic Nephropathy. Int J Nephrol 2018; 2018:6753489. [PMID: 29854459 PMCID: PMC5949186 DOI: 10.1155/2018/6753489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the leading cause of chronic kidney disease. African Americans are disproportionately burdened by diabetic kidney disease (DKD) and end stage renal disease (ESRD). Disparities in DKD have genetic and socioeconomic components, yet its prevalence in African Americans is not adequately studied. The current study used multiple biomarkers of DKD to evaluate undiagnosed DKD in uninsured and underinsured African American men in Greensboro, North Carolina. Participants consisted of three groups: nondiabetic controls, diabetic patients without known kidney disease, and diabetic patients with diagnosed DKD. Our data reveal undiagnosed kidney injury in a significant proportion of the diabetic patients, based on levels of both plasma and urinary biomarkers of kidney injury, namely, urinary albumin to creatinine ratio, kidney injury molecule-1, cystatin C, and neutrophil gelatinase-associated lipocalin. We also found that the urinary levels of meprin A, meprin B, and two kidney meprin targets (nidogen-1 and monocytes chemoattractant protein-1) increased with severity of kidney injury, suggesting a potential role for meprin metalloproteases in the pathophysiology of DKD in this subpopulation. The study also demonstrates a need for more aggressive tests to assess kidney injury in uninsured diabetic patients to facilitate early diagnosis and targeted interventions that could slow progression to ESRD.
Collapse
|
10
|
Meprin metalloproteases: Molecular regulation and function in inflammation and fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2096-2104. [PMID: 28502593 DOI: 10.1016/j.bbamcr.2017.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023]
Abstract
The zinc-endopeptidases meprin α and meprin β are extracellular proteases involved in connective tissue homeostasis, intestinal barrier function and immunological processes. Meprins are unique among other extracellular proteases with regard to cleavage specificity and structure. Meprin α and meprin β have a strong preference for negatively charged amino acids around the scissile bond, reflected by cleavage sites identified in procollagen I, the amyloid precursor protein (APP) and the interleukin-6 receptor (IL-6R). In this review we report on recent findings that summarize the complex molecular regulation of meprins, particular folding, activation and shedding. Dysregulation of meprin α and meprin β is often associated with pathological conditions such as neurodegeneration, inflammatory bowel disease and fibrosis. Based on mouse models and patient data we suggest meprins as possible key regulators in the onset and progression of fibrotic disorders, leading to severe diseases such as pulmonary hypertension. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
11
|
Bylander JE, Ahmed F, Conley SM, Mwiza JM, Ongeri EM. Meprin Metalloprotease Deficiency Associated with Higher Mortality Rates and More Severe Diabetic Kidney Injury in Mice with STZ-Induced Type 1 Diabetes. J Diabetes Res 2017; 2017:9035038. [PMID: 28804725 PMCID: PMC5540529 DOI: 10.1155/2017/9035038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
Meprins are membrane-bound and secreted metalloproteinases consisting of α and/or β subunits that are highly expressed in kidney epithelial cells and are differentially expressed in podocytes and leukocytes (macrophages and monocytes). Several studies have implicated meprins in the progression of diabetic nephropathy (DN) and fibrosis-associated kidney disease. However, the mechanisms by which meprins modulate DN are not understood. To delineate the role of meprins in DN, we subjected meprin αβ knockout (αβKO) mice and their wild-type (WT) counterparts to streptozotocin-induced type 1 diabetes. The 18-week survival rates were significantly lower for diabetic meprin αβKO mice when compared to those for their WT counterparts. There were significant decreases in mRNA and protein levels for both meprin α and β in diabetic WT kidneys. Furthermore, the blood urea nitrogen levels and urine albumin/creatinine ratios increased in diabetic meprin αβKO but not in diabetic WT mice, indicating that meprins may be protective against diabetic kidney injury. The brush border membrane levels of villin, a meprin target, significantly decreased in diabetic WT but not in diabetic meprin αβKO kidneys. In contrast, isoform-specific increases in cytosolic levels of the catalytic subunit of PKA, another meprin target, were demonstrated for both WT and meprin αβKO kidneys.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/mortality
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/mortality
- Diabetes Mellitus, Type 1/pathology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/mortality
- Diabetic Nephropathies/pathology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/mortality
- Kidney Failure, Chronic/pathology
- Kidney Function Tests
- Male
- Metalloendopeptidases/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mortality
- Severity of Illness Index
- Streptozocin
Collapse
Affiliation(s)
- John E. Bylander
- Department of Environmental Sciences, Pennsylvania State University, Harrisburg, Middletown, PA 17057, USA
| | - Faihaa Ahmed
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sabena M. Conley
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Jean-Marie Mwiza
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Elimelda Moige Ongeri
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
Hypoxia Associated Proteolytic Processing of OS-9 by the Metalloproteinase Meprin β. Int J Nephrol 2016; 2016:2851803. [PMID: 27478637 PMCID: PMC4961814 DOI: 10.1155/2016/2851803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/08/2016] [Accepted: 05/26/2016] [Indexed: 11/29/2022] Open
Abstract
Meprin metalloproteases play a role in the pathology of ischemia/reperfusion- (IR-) induced renal injury. The endoplasmic reticulum-associated protein, osteosarcoma-9 (OS-9), has been shown to interact with the carboxyl-terminal tail of meprin β. More importantly, OS-9 interacts with the hypoxia inducible factor-1α (HIF-1α) and the prolyl-hydroxylase, proteins which mediate the cell's response to hypoxia. To determine if OS-9 is a meprin substrate, kidney proteins from meprin αβ knockout mice (αβKO) (which lack endogenous meprins) and purified human OS-9 were incubated with activated forms of meprin A and meprin B, and Western blot analysis was used to evaluate proteolytic processing of OS-9. Fragmentation of OS-9 was observed in reactions with meprin B, but not meprin A. To determine whether meprin B cleaves OS-9 in vivo, wild-type (WT) and meprin αβKO mice were subjected to IR-induced renal injury. Fragmentation of OS-9 was observed in kidney proteins from WT mice subjected to IR, but not in meprin αβKO counterparts. Transfection of kidney cells (MDCK and HEK293) with meprin β cDNA prevented accumulation of OS-9 following exposure to the hypoxia mimic, CoCl2. These data suggest that meprin β interaction with OS-9 plays a role in the hypoxia response associated with IR-induced renal injury.
Collapse
|
13
|
Kumar N, Nakagawa P, Janic B, Romero CA, Worou ME, Monu SR, Peterson EL, Shaw J, Valeriote F, Ongeri EM, Niyitegeka JMV, Rhaleb NE, Carretero OA. The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase. Am J Physiol Renal Physiol 2016; 310:F1026-34. [PMID: 26962108 DOI: 10.1152/ajprenal.00562.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-β4 (Tβ4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tβ4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tβ4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tβ4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tβ4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tβ4 was incubated with either meprin-α or POP alone. Incubation of Tβ4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tβ4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tβ4 is mediated by successive hydrolysis involving meprin-α and POP.
Collapse
Affiliation(s)
- Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Jiajiu Shaw
- 21st Century Therapeutics, Inc., Detroit, Michigan
| | - Frederick Valeriote
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan; and
| | - Elimelda M Ongeri
- Department of Biology, North Carolina A & T State University, Greensboro, North Carolina
| | | | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|