1
|
Blum MM, Schmeißer W, Dentzel M, Thiermann H, John H. The blistering warfare agent O-mustard (agent T) generates protein-adducts with human serum albumin useful for biomedical verification of exposure and forms intramolecular cross-links. Anal Bioanal Chem 2024; 416:5791-5804. [PMID: 39215775 PMCID: PMC11493803 DOI: 10.1007/s00216-024-05501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The highly blistering sulfur mustard analogue agent T (bis(2-chloroethylthioethyl) ether), also known as O-mustard or oxy-mustard, is a common impurity in military grade sulfur mustard (SM) and a component of mixtures such as "HT" that are still found in old munitions. Together with sesquimustard (Q), it is the most important SM analogue and tightly regulated as a Schedule 1 chemical under the Chemical Weapons Convention. We report the adducts of T with nucleophilic Cys34 and other residues in human serum albumin (HSA) formed in vitro. A micro liquid chromatography electrospray ionization high-resolution tandem-mass spectrometry method (µLC-ESI MS/HR MS) was developed for the detection and identification of biomarker peptides alkylated by a T-derived hydroxyethylthioethyloxyethylthioethyl (HETEOETE)-moiety (as indicated by an asterisk below). Following proteolysis of T-exposed human plasma with pronase, the dipeptide Cys34*Pro and the single amino acid residue His* were produced. The use of proteinase K yielded Cys34*ProPhe and the use of pepsin generated ValThrGlu48*Phe, AlaGlu230*ValSerLysLeu, and LeuGlyMet329*Phe. Corresponding peptide-adducts of SM and Q were detected in a common workflow that in principle allowed the estimation of the mustard or mustard composition encountered during exposure. Novel adducts of Q at the Glu230 and Met239 residues were detected and are reported accordingly. Based on molecular dynamics simulations, we identified regular interactions of the Cys34(-HETEOETE)-moiety with several glutamic acid residues in HSA including Glu86, which is not an obvious interaction partner by visual inspection of the HSA crystal structure. The existence of this and other intramolecular cross-links was experimentally proven for the first time.
Collapse
Affiliation(s)
- Marc-Michael Blum
- Blum - Scientific Services, Björnsonweg 70d, 22587, Hamburg, Germany
| | - Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Marina Dentzel
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
2
|
Sieber PH, Steinritz D, Worek F, John H. Disulfide-adducts with cysteine residues in human serum albumin prove exposure to malodorous mercaptans in vitro. Anal Biochem 2024; 692:115568. [PMID: 38750681 DOI: 10.1016/j.ab.2024.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Malodorants are mixtures containing mercaptans, which trigger the flight instinct upon exposure and might thus be deployed in military and civilian defense scenarios. Exposure to mercaptans might lead to unconsciousness, thus representing a possible threat for health. Therefore, we developed and validated a bioanalytical procedure for the simultaneous detection and identification of corresponding biomarkers for the verification of exposure to mercaptans. Disulfide-adducts of ethyl mercaptan (SEt), n-butyl mercaptan (SnBu), tert-butyl mercaptan (StBu) and iso-amyl mercaptan (SiAm) with cysteine (Cys) residues in human serum albumin (HSA) were formed by in vitro incubation of human plasma. After pronase-catalyzed proteolysis, reaction products were identified as adducts of the single amino acid Cys and the dipeptide cysteine-proline (Cys34Pro) detected by a sensitive μLC-ESI MS/MS method working in the scheduled multiple reaction monitoring (sMRM) mode. Dose-response studies showed linearity for the yield of Cys34Pro-adducts in the range from 6 nM to 300 μM of mercaptans in plasma and limits of identification (LOI) were in the range from 60 nM to 6 μM. Cys34-adducts showed stability for at least 6 days in plasma (37 °C). The presented disulfide-biomarkers expand the spectrum for bioanalytical verification procedures and might be helpful to prove exposure to malodorants.
Collapse
Affiliation(s)
- Paula Helena Sieber
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Goethestraße 33, 80336, Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Goethestraße 33, 80336, Munich, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
3
|
Sieber PH, Steinritz D, Worek F, John H. Mercaptans in malodorants break disulfide bridges in human serum albumin and form adducts suitable as biomarkers of exposure in vitro. Drug Test Anal 2024. [PMID: 39051459 DOI: 10.1002/dta.3776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Malodorants comprise notoriously smelling mercaptans and might be applied for crowd control. Because exposure to malodorants may lead to irritation of the respiratory system, choking, and coma, bioanalytical verification of poisoning might be required in a medical and forensic context. We herein present the detection and identification of novel biomarkers of exposure to ethyl mercaptan, n-butyl mercaptan, tert-butyl mercaptan, and iso-amyl mercaptan. These alkyl thiol compounds were found to form disulfide adducts in human serum albumin (HSA) in plasma in vitro with the only non-disulfide-bridged Cys34 residue and with other residues being part of the disulfide-bridged pattern in HSA. After proteinase K-catalyzed proteolysis, adducts of all mercaptans were detected simultaneously as the tripeptide Cys34*ProPhe and the dipeptides Cys369*Tyr, ValCys316*, and Cysx*Ala (x denominates either Positions 91, 200, 253, 361, and/or 448) by a sensitive micro-liquid chromatography-electrospray ionization tandem mass spectrometry (μLC-ESI MS/MS) method working in the scheduled multiple reaction monitoring (sMRM) mode. Time- and concentration-dependent adduct formations while exposure and proteolysis were investigated and the suitability of adducts as biomarkers of exposure was elaborated. Adducts at Cys34 showed the lowest limits of identification (LOIs, 6 nM to 1.2 μM mercaptan in plasma) and superior stability in plasma at 37°C. Therefore, Cys34*ProPhe appears as the most promising target to prove exposure to mercaptans at least in vitro.
Collapse
Affiliation(s)
- Paula Helena Sieber
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
4
|
Avigo L, Hallez F, Combès A, Desoubries C, Albaret C, Bossée A, Pichon V. Analytical methods based on liquid chromatography for the analysis of albumin adducts involved in retrospective biomonitoring of exposure to mustard agents. Anal Bioanal Chem 2024; 416:2173-2188. [PMID: 37702771 DOI: 10.1007/s00216-023-04925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The objective of the present review is to list, describe, compare, and critically analyze the main procedures developed in the last 20 years for the analysis of digested alkylated peptides, resulting from the adduction of albumin by different mustard agents, and that can be used as biomarkers of exposure to these chemical agents. While many biomarkers of sulfur mustard, its analogues, and nitrogen mustards can easily be collected in urine such as their hydrolysis products, albumin adducts require blood or plasma collection to be analyzed. Nonetheless, albumin adducts offer a wider period of detectability in human exposed patients than urine found biomarkers with detection up to 25 days after exposure to the chemical agent. The detection of these digested alkylated peptides of adducted albumin constitutes unambiguous proof of exposure. However, their determination, especially when they are present at very low concentration levels, can be very difficult due to the complexity of the biological matrices. Therefore, numerous sample preparation procedures to extract albumin and to recover alkylated peptides after a digestion step using enzymes have been proposed prior to the analysis of the targeted peptides by liquid chromatography coupled to mass spectrometry method with or without derivatization step. This review describes and compares the numerous procedures including a number of different steps for the extraction and purification of adducted albumin and its digested peptides described in the literature to achieve detection limits for biological samples exposed to sulfur mustard, its analogues, and nitrogen mustards in the ng/mL range.
Collapse
Affiliation(s)
- Lorenzo Avigo
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Florine Hallez
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
| | | | | | - Anne Bossée
- DGA, CBRN Defence, 5 Rue Lavoisier, 91710, Vert-Le-Petit, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France.
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
5
|
Chen B, Ren Z, Zhang T, Yu H, Shu Z, Liu C, Yang Y, Xu P, Liu S. Simultaneous quantification of multiple amino acid adducts from sulfur mustard-modified human serum albumin in plasma at trace exposure levels by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry after propionyl derivatization. J Chromatogr A 2022; 1678:463354. [PMID: 35901667 DOI: 10.1016/j.chroma.2022.463354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Sulfur mustard (HD) is a highly toxic vesicant and is prohibited by the Organisation for the Prohibition of Chemical Weapons (OPCW). HD can modify human serum albumin (HSA) to generate hydroxyethylthioethyl (HETE) adducts, which could be utilized as biomarkers for verifying HD exposure in forensic analysis. Here, five amino acid adducts generated from pronase digestion of HD-exposed human serum albumin (HD-HSA) in plasma were selected as biomarkers to retrospectively detect HD exposure. HD-HSA was precipitated from plasma with acetone, digested by pronase, derivatized with propionic anhydride (PA), and analysed with ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-TQ MS). The limits of detection (LODs) and limits of quantification (LOQs) of the HD exposure concentrations were evaluated as 1.00 ng/mL at S/N≥3 and 3.00 ng/mL at S/N≥10, respectively, which are approximately 60 times lower than those of the reported method. The approach shows good linearity (R2≥0.997) from 3.00 ng/mL to 10.0 µg/mL of HD-exposed human plasma with satisfactory precision and accuracy. The developed approach was applied to analysing samples from the 6th OPCW Biomedical Proficiency Test (BioPT). The study showed that the developed approach was also suitable for analysing human plasma samples that were exposed to six of HD analogues, which were common impurities in sulfur mustard mixtures. Moreover, the method was successfully applied to plasma from other species, including rabbits, rats and cattle. This study provides a reliable and sensitive tool for the retrospective detection of vesicants exposure based on multiple biomarkers.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, P. R. China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - ZhiBin Shu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China.
| |
Collapse
|
6
|
Retrospective detection for V-type OPNAs exposure via phosphonylation and disulfide adducts in albumin. Sci Rep 2022; 12:10979. [PMID: 35768567 PMCID: PMC9243071 DOI: 10.1038/s41598-022-15198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) that damage the central nervous system by inhibiting acetylcholinesterase activity, pose severe threats to human health and life security. Reliable biomarkers that quickly and accurately detect OPNAs exposure are urgently needed to help diagnose quickly and treat in time. Albumins that covalently bind to OPNAs could serve as important targets for retrospective verification of OPNAs exposure. The goal of this study is to explore the potential biomarkers in albumins with high reactivity and good stability and expand the group of potential biomarkers in different species for detecting the exposure of V-type OPNAs including O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX), O-isobutyl S-(2(diethylamino)ethyl) methylphosphonothioate (VR), and O-butyl S-(2-(diethylamino)ethyl) methylphosphonothioate (Vs). Taking human serum albumin (HSA), bovine serum albumin (BSA) and rabbit serum albumin (RSA) as the research objectives, multiple active sites including phosphonylation and disulfide adduct sites were observed in albumins from different species. Numerous phosphonylation sites labeled by all agents in one type of albumin were found. Among the different species, four shared phosphonylation sites with high reactivity include K499, K549, K249, and Y108. In addition, Y108 on ETY*GEMADCCAK, Y287 on Y*ICENQDSISSK, Y377 on TY*ETTLEK and Y164 on YLY*EIAR in HSA were stably phosphonylated by all agents in gradient concentration, making them stable and suitable potential biomarkers for V-type OPNAs exposure. Notably, Y108 on ETY*GEMADCCAK in HSA, on DTY*GDVADCCEK in RSA, and on ETY*GDMADCCEK in BSA were highly reactive to all V-type agents, regardless of species. It was also successfully labeled in HSA exposed to class V agents in gradient concentration. Y108 is expected to be used to screen and identify the exposure of V-type agents in the retrospective research. Disulfide adducts sites, consisted of four sites in HSA and two sites in BSA were also successfully labeled by V-type agents, and characteristic ion fragments from these disulfide adducts were also identified by secondary mass spectrometry. Molecular simulation of the stably modified sites were conducted to discover the promoting factors of covalent adduct formation, which help further clarify formation mechanism of albumin adducts at active sites.
Collapse
|
7
|
Chen B, Zhang Q, Ren Z, Zhang T, Yu H, Liu C, Yang Y, Xu P, Liu S. A proteomics strategy for the identification of multiple sites in sulfur mustard-modified HSA and screening potential biomarkers for retrospective analysis of exposed human plasma. Anal Bioanal Chem 2022; 414:4179-4188. [PMID: 35478034 DOI: 10.1007/s00216-022-04070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022]
Abstract
A major challenge for the unequivocal verification of alleged exposure to sulfur mustard (HD) lies in identifying its multiple modifications on endogenous proteins and utilizing these modified proteins to achieve accurate, sensitive, and rapid detection for retrospective analysis of HD exposure. As the most abundant protein in human plasma, human serum albumin (HSA) can react with many xenobiotics, such as HD, to protect the body from damage. The HSA adducts induced by HD have been used as biomarkers for the verification of HD exposure. In this study, the modification sites on HSA by HD were identified through application of the bottom-up strategy used in proteomics, and 41 modified sites were discovered with seven types of amino acids, of which 3 types were not previously reported. Then, different enzymes, including pepsin, endoproteinase Glu-C, and pronase, were applied to digest HD-HSA to produce adducts with hydroxyethylthioethyl (HETE) groups, which may be used as potential biomarkers for HD exposure. As candidates for retrospective analysis, sixteen adducts were obtained and characterized with ultra-high-pressure liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry (UHPLC-QE Focus MS). These potential biomarkers were evaluated in human plasma that was exposed in vitro to HD and five of its analogues. This study integrated the identification of modification sites through application of the bottom-up strategy of proteomics and screening biomarkers, providing a novel strategy for retrospective detection of the exposure of xenobiotic chemicals.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Qiaoli Zhang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China.
| |
Collapse
|
8
|
John H, Hörmann P, Schrader M, Thiermann H. Alkylated glutamic acid and histidine derived from protein-adducts indicate exposure to sulfur mustard in avian serum. Drug Test Anal 2022; 14:1140-1148. [PMID: 35137544 DOI: 10.1002/dta.3236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
Sulfur mustard (SM, bis(2-chloroethyl)-sulfide) is a banned chemical warfare agent deployed in the violent conflict in the Middle East poisoning humans and animals. For legal reasons bioanalytical methods are mandatory proving exposure to SM. Reaction products (adducts) of SM with endogenous proteins e.g., serum albumin (SA) are valuable long-lived targets for analysis. Whereas nearly all methods known so far focus on human proteins, we address for the first time neat chicken SA and avian serum from chicken, duck and ostrich. After proteolysis, protein precipitation, evaporation of the supernatant and re-dissolution analysis was performed by micro liquid chromatography-electrospray ionization tandem-mass spectrometry in the selected reaction monitoring mode, μLC-ESI MS/MS (SRM), for detection of the hydroxyethylthioethyl product ion [HETE]+ at m/z 105.0. After in vitro incubation with SM and pronase-catalyzed proteolysis the alkylated amino acids Glu(-HETE) and His(-HETE) were detected. Both borne the SM-characteristic HETE-moiety bound to their side chain. The 8-fold deuterated SM analogue (d8-SM) was also applied to support adduct identification. Proteolysis conditions were optimized with respect to pH (8.0), temperature (50°C) and time to maximize the yield of Glu(-HETE) (30 min) and His(-HETE) (180 min). Amino acid adducts were stable in the autosampler for at least 24 h. Protein-adducts were stable in serum at -30°C for at least 33 d and for three freeze-and-thaw cycles. At the body temperature of chicken (+40°C) Glu(-HETE) was degraded in serum (period of half-change 3 d) whereas His(-HETE) remained stable. The presented method broadens the toolbox of procedures to document poisoning with SM.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Philipp Hörmann
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences
| | - Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
9
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
10
|
Leninskii MA, Shachneva MD, Savel’eva EI, Koryagina NL. Separation and Preconcentration Methods for the Determination of Highly Toxic Organic Compounds (Poisons). JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
12
|
Richter A, Siegert M, Thiermann H, John H. Alkylated albumin-derived dipeptide C(-HETE)P derivatized by propionic anhydride as a biomarker for the verification of poisoning with sulfur mustard. Anal Bioanal Chem 2021; 413:4907-4916. [PMID: 34215915 PMCID: PMC8318952 DOI: 10.1007/s00216-021-03454-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
Sulfur mustard (SM) is a banned chemical warfare agent recently used in the Syrian Arab Republic conflict causing erythema and blisters characterized by complicated and delayed wound healing. For medical and legal reasons, the proof of exposure to SM is of high toxicological and forensic relevance. SM reacts with endogenous human serum albumin (HSA adducts) alkylating the thiol group of the cysteine residue C34, thus causing the addition of the hydroxyethylthioethyl (HETE) moiety. Following proteolysis with pronase, the biomarker dipeptide C(-HETE)P is produced. To expand the possibilities for verification of exposure, we herein introduce a novel biomarker produced from that alkylated dipeptide by derivatization with propionic anhydride inducing the selective propionylation of the N-terminus yielding PA-C(-HETE)P. Quantitative derivatization is carried out at room temperature in aqueous buffer within 10 s. The biomarker was found to be stable in the autosampler at 15 °C for at least 24 h, thus documenting its suitability even for larger sets of samples. Selective and sensitive detection is done by micro liquid chromatography-electrospray ionization tandem-mass spectrometry (μLC-ESI MS/MS) operating in the selected reaction monitoring (SRM) mode detecting product ions of the single protonated PA-C(-HETE)P (m/z 379.1) at m/z 116.1, m/z 137.0, and m/z 105.0. The lower limit of detection corresponds to 32 nM SM in plasma in vitro and the limit of identification to 160 nM. The applicability to real exposure scenarios was proven by analyzing samples from the Middle East confirming poisoning with SM. ![]()
Collapse
Affiliation(s)
- Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Markus Siegert
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
13
|
John H, Richter A, Thiermann H. Evidence of sulfur mustard poisoning by detection of the albumin-derived dipeptide biomarker C(-HETE)P after nicotinylation. Drug Test Anal 2021; 13:1593-1602. [PMID: 34145783 DOI: 10.1002/dta.3114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM, bis[2-chloroethyl]-sulfide) is a banned chemical warfare agent that was frequently used in recent years and led to numerous poisoned victims who developed painful erythema and blisters. Post-exposure analysis of SM incorporation can be performed by the detection of human serum albumin (HSA)-derived peptides. HSA alkylated by SM contains a hydroxyethylthioethyl (HETE)-moiety bound to the cysteine residue C34 yielding the dipeptide biomarker C(-HETE)P after pronase-catalyzed proteolysis. We herein present a novel procedure for the selective precolumn nicotinylation of its N-terminus using 1-nicotinoyloxy-succinimide. The reaction was carried out for 2 h at ambient temperature with a yield of 81%. The derivative NA-C(-HETE)P was analyzed by micro liquid chromatography-electrospray ionization tandem-mass spectrometry working in the selected reaction monitoring mode (μLC-ESI MS/MS SRM). The derivative was shown to be stable in the autosampler at 15°C for at least 24 h. The single protonated precursor ion (m/z 428.1) was subjected to collision-induced dissociation yielding product ions at m/z 116.1, m/z 137.0, and m/z 105.0 used for selective monitoring without any plasma-derived interferences. NA-C(-HETE)P showed a mass spectrometric response superior to the non-derivatized dipeptide thus yielding larger peak areas (factor 1.3 ± 0.2). The lower limit of identification corresponded to 80 nM SM spiked to plasma in vitro. The presented procedure was applied to real case plasma samples from 2015 collected in the Middle East confirming SM poisoning.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
14
|
Alkylated epidermal creatine kinase as a biomarker for sulfur mustard exposure: comparison to adducts of albumin and DNA in an in vivo rat study. Arch Toxicol 2021; 95:1323-1333. [PMID: 33635393 PMCID: PMC8032612 DOI: 10.1007/s00204-021-03005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys282 was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys282 in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study.
Collapse
|
15
|
Rybal’chenko IV, Baigil’diev TM, Rodin IA. Chromatography–Mass Spectrometry Analysis for the Determination of the Markers and Biomarkers of Chemical Warfare Agents. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Baygildiev ТМ, Vokuev MF, Braun AV, Yashkir VA, Rуbalchenko IV, Rodin IA. Identification of 2-(diethylamino)ethylthiol dipeptide (Cys-Pro) adduct as biomarker of nerve agents VR and CVX in human plasma using liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 2021; 413:1905-1916. [PMID: 33479815 DOI: 10.1007/s00216-021-03158-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Organophosphorus nerve agents pose a significant threat to human health. The most toxic compounds in this class include V-type poisonous substances such as VX, CVX, and VR. Although all stockpiles of this type of substance are subject to destruction under the Chemical Weapons Convention (CWC), there is still a risk that they could be used for criminal and terrorist purposes. The latter determines the relevance of studies aimed at identification of biomarkers that may indicate the exposure of these group substances to the organism. A liquid chromatography mass spectrometry/high-resolution mass spectrometry (LC-MS/HR MS) method for determination of trace amounts of nerve agents such as VR and CVX in human plasma was proposed. The method is based on enzymatic plasma hydrolysis with the use of pronase to form a stable adduct of 2-(diethylamino)ethylthiol with dipeptide cysteine-proline (DEAET-CP) with its subsequent determination by LC-MS/HR MS. Synthesis of DEAET-CP as reference compound was conducted using non-toxic precursors. Sample preparation of human blood plasma samples exposed to VR was carried out with the use of solid-phase extraction (SPE). Liquid chromatography (LC) separation on the reversed-phase column and mass spectrometric detection (selection of optimal transitions and detection modes) were performed. The achieved limit of detection (LOD) of VR (in the form of DEAET-CP) in human blood plasma was 0.05 ng mL-1. The proposed approach was developed using plasma samples exposed to VR and CVX obtained in the frame of the Fifth Official Biomedical Test of the Organization for the Prohibition of Chemical Weapons (OPCW) and showed good specificity of detection.
Collapse
Affiliation(s)
- Тimur М Baygildiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Mikhail F Vokuev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Arkady V Braun
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Vadim A Yashkir
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Igor V Rуbalchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Igor A Rodin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Department of Epidemiology and Evidence Based Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| |
Collapse
|
17
|
Blum MM, Richter A, Siegert M, Thiermann H, John H. Adduct of the blistering warfare agent sesquimustard with human serum albumin and its mass spectrometric identification for biomedical verification of exposure. Anal Bioanal Chem 2020; 412:7723-7737. [PMID: 32902690 PMCID: PMC7550388 DOI: 10.1007/s00216-020-02917-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022]
Abstract
Apart from the well-known sulfur mustard (SM), additional sulfur-containing blistering chemical warfare agents exist. Sesquimustard (Q) is one of them and five times more blistering than SM. It is a common impurity in mustard mixtures and regularly found in old munitions but can also be used in pure form. Compared to the extensive literature on SM, very little experimental data is available on Q and no protein biomarkers of exposure have been reported. We herein report for the first time the adduct of Q with the nucleophilic Cys34 residue of human serum albumin (HSA) formed in vitro and introduce two novel bioanalytical procedures for detection. After proteolysis of this HSA adduct catalyzed either by pronase or by proteinase K, two biomarkers were identified by high-resolution tandem mass spectrometry (MS/HR MS), namely a dipeptide and a tripeptide, both alkylated at their Cys residue, which we refer to as HETETE-CP and HETETE-CPF. HETETE represents the Q-derived thio-alkyl moiety bearing a terminal hydroxyl group: "hydroxyethylthioethylthioethyl." Targeting both peptide markers from plasma, a micro liquid chromatography-electrospray ionization tandem mass spectrometry method working in the selected reaction monitoring mode (μLC-ESI MS/MS SRM) was developed and validated as well suited for the verification of exposure to Q. Fulfilling the quality criteria defined by the Organisation for the Prohibition of Chemical Weapons, the novel methods enable the detection of exposure to Q alone or in mixtures with SM. We further report on the relative reactivity of Q compared to SM. Based on experiments making use of partially deuterated Q as the alkylating agent, we rule out a major role for six-membered ring sulfonium ions as relevant reactive species in the alkylation of Cys34. Furthermore, the results of molecular dynamics simulations are indicative that the protein environment around Cys34 allows adduct formation with elongated but not bulky molecules such as Q, and identify important hydrogen bonding interactions and hydrophobic contacts. Graphical abstract.
Collapse
Affiliation(s)
- Marc-Michael Blum
- Blum - Scientific Services, Björnsonweg 70d, 22587, Hamburg, Germany
| | - Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Markus Siegert
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
18
|
Lüling R, Schmeißer W, Siegert M, Mückter H, Dietrich A, Thiermann H, Gudermann T, John H, Steinritz D. Identification of creatine kinase and alpha-1 antitrypsin as protein targets of alkylation by sulfur mustard. Drug Test Anal 2020; 13:268-282. [PMID: 32852113 DOI: 10.1002/dta.2916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Sulfur mustard (SM) is a toxic chemical warfare agent deployed in several conflicts within the last 100 years and still represents a threat in terroristic attacks and warfare. SM research focuses on understanding the pathophysiology of SM and identifying novel biomarkers of exposure. SM is known to alkylate nucleophilic moieties of endogenous proteins, for example, free thiol groups of cysteine residues. The two-dimensional-thiol-differences in gel electrophoresis (2D-thiol-DIGE) technique is an initial proteomics approach to detect proteins with free cysteine residues. These amino acids are selectively labeled with infrared-maleimide dyes visualized after GE. Cysteine residues derivatized by alkylating agents are no longer accessible for the maleimide-thiol coupling resulting in the loss of the fluorescent signal of the corresponding protein. To prove the applicability of 2D-thiol-DIGE, this technology was exemplarily applied to neat human serum albumin treated with SM, to lysates from human cell culture exposed to SM as well as to human plasma exposed to CEES (chloroethyl ethyl sulfide, an SM analogue). Exemplarily, the most prominent proteins modified by SM were identified by matrix-assisted laser desorption/ionization time-of-flight (tandem) mass spectrometry, MALDI-TOF MS(/MS), as creatine kinase (CK) from human cells and as alpha-1 antitrypsin (A1AT) from plasma samples. Peptides containing the residue Cys282 of CK and Cys232 of A1AT were unambiguously identified by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS) as being alkylated by SM bearing the specific hydroxyethylthioethyl-(HETE)-moiety. Both peptides might represent potential biomarkers of SM exposure. This is the first report introducing these endogenous proteins as targets of SM alkylation.
Collapse
Affiliation(s)
- Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| |
Collapse
|
19
|
Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Lüling R, Singer H, Popp T, John H, Boekhoff I, Thiermann H, Daumann LJ, Karaghiosoff K, Gudermann T, Steinritz D. Sulfur mustard alkylates steroid hormones and impacts hormone function in vitro. Arch Toxicol 2019; 93:3141-3152. [DOI: 10.1007/s00204-019-02571-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
|
21
|
Steinritz D, Lang S, Popp T, Siegert M, Rothmiller S, Kranawetvogl A, Schmidt A, John H, Gudermann T, Thiermann H, Kehe K. Skin sensitizing effects of sulfur mustard and other alkylating agents in accordance to OECD guidelines. Toxicol Lett 2019; 314:172-180. [PMID: 31404593 DOI: 10.1016/j.toxlet.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/28/2022]
Abstract
Vesicants cause a multitude of cutaneous reactions like erythema, blisters and ulcerations. After exposure to sulfur mustard (SM) and related compounds, patients present dermal symptoms typically known for chemicals categorized as skin sensitizer (e.g. hypersensitivity and flare-up phenomena). However, although some case reports led to the assumption that SM and other alkylating compounds represent sensitizers, a comprehensive investigation of SM-triggered immunological responses has not been conducted so far. Based on a well-structured system of in chemico and in vitro test methods, the Organization for Economic Co-operation and Development (OECD) established procedures to categorize agents on their skin sensitizing abilities. In this study, the skin sensitizing potential of SM and three related alkylating agents (AAs) was assessed following the OECD test guidelines. Besides SM, investigated AAs were chlorambucil (CHL), nitrogen mustard (HN3) and 2-chloroethyl ethyl sulfide (CEES). The methods are described in detail in the EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM). In accordance to OECD recommendations, skin sensitization is a pathophysiological process starting with a molecular initiating step and ending with the in vivo outcome of an allergic contact dermatitis. This concept is called adverse outcome pathway (AOP). An AOP links an adverse outcome to various key events which can be assayed by established in chemico and in vitro test methods. Positive outcome in two out of three key events indicates that the chemical can be categorized as a skin sensitizer. In this study, key event 1 "haptenation" (covalent modification of epidermal proteins), key event 2 "activation of epidermal keratinocytes" and key event 3 "activation of dendritic cells" were investigated. Covalent modification of epidermal proteins measured by using the DPRA-assay provided distinct positive results for all tested substances. Same outcome was seen in the KeratinoSens assay, investigating the activation of epidermal keratinocytes. The h-CLAT assay performed to determine the activation of dendritic cells provided positive results for SM and CEES but not for CHL and HN3. Altogether, following OECD requirements, our results suggest the classification of all investigated substances as skin sensitizers. Finally, a tentative AOP for SM-induced skin sensitization is suggested.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany.
| | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tanja Popp
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Institute of Radiobiology, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Faculty of Human Sciences, Bundeswehr University, 85579, Neubiberg, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Kai Kehe
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Medical Service Academy, 80937, Munich, Germany
| |
Collapse
|
22
|
Sezigen S, Eyison RK, Kilic E, Kenar L. Evidence of sulfur mustard exposure in victims of chemical terrorism by detection of urinary β-lyase metabolites. Clin Toxicol (Phila) 2019; 58:36-44. [DOI: 10.1080/15563650.2019.1614190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sermet Sezigen
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | - Rusen Koray Eyison
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | - Ertugrul Kilic
- Department of Anesthesia and Reanimation, SehitKamil State Hospital, Gaziantep, Turkey
| | - Levent Kenar
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
23
|
Forensic evidence of sulfur mustard exposure in real cases of human poisoning by detection of diverse albumin-derived protein adducts. Arch Toxicol 2019; 93:1881-1891. [DOI: 10.1007/s00204-019-02461-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
|
24
|
A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2019; 411:3405-3415. [DOI: 10.1007/s00216-019-01820-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
25
|
Golime R, Chandra B, Palit M, Dubey DK. Adductomics: a promising tool for the verification of chemical warfare agents’ exposures in biological samples. Arch Toxicol 2019; 93:1473-1484. [DOI: 10.1007/s00204-019-02435-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
26
|
Siegert M, Gandor F, Kranawetvogl A, Börner H, Thiermann H, John H. Methionine
329
in human serum albumin: A novel target for alkylation by sulfur mustard. Drug Test Anal 2019; 11:659-668. [DOI: 10.1002/dta.2548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Siegert
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Felix Gandor
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Hans Börner
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| |
Collapse
|
27
|
Kranawetvogl A, Siegert M, Eyer F, Thiermann H, John H. Verification of organophosphorus pesticide poisoning: Detection of phosphorylated tyrosines and a cysteine-proline disulfide-adduct from human serum albumin after intoxication with dimethoate/omethoate. Toxicol Lett 2018; 299:11-20. [DOI: 10.1016/j.toxlet.2018.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
|
28
|
A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Arch Toxicol 2018; 93:61-79. [PMID: 30324314 DOI: 10.1007/s00204-018-2324-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Despite its worldwide ban, the warfare agent sulfur mustard (SM) still represents a realistic threat, due to potential release in terroristic attacks and asymmetric conflicts. Therefore, the rigorous and quantitative detection of SM exposure is crucial for diagnosis, health risk assessment, and surveillance of international law. Alkylation adducts of nucleic acids can serve as valuable toxicologically relevant 'biomarkers of SM exposure'. Here, we developed a robust and versatile bioanalytical platform based on isotope dilution UPLC-MS/MS to quantify major SM-induced DNA and RNA adducts, as well as adducts induced by the monofunctional mustard 2-chloroethyl ethyl sulfide. We synthesized 15N/13C-labeled standards, which allowed absolute quantitation with full chemical specificity and subfemtomole sensitivities. DNA and RNA mono-alkylation adducts and crosslinks were carefully analyzed in a dose- and time-dependent manner in various matrices, including human cancer and primary cells, derived of the main SM-target tissues. Nucleic acid adducts were detected up to 6 days post-exposure, indicating long persistence, which highlights their toxicological relevance and proves their suitability as forensic and medical biomarkers. Finally, we investigated ex vivo-treated rat skin biopsies and human blood samples, which set the basis for the implementation into the method portfolio of Organization for the Prohibition of Chemical Weapons-designated laboratories to analyze authentic samples from SM-exposed victims.
Collapse
|
29
|
Siegert M, Kranawetvogl A, Thiermann H, John H. Glutathione as an antidote for sulfur mustard poisoning: Mass spectrometric investigations of its potency as a chemical scavenger. Toxicol Lett 2018; 293:31-37. [DOI: 10.1016/j.toxlet.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
30
|
Zubel T, Bürkle A, Mangerich A. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure? Toxicol Lett 2018; 293:21-30. [DOI: 10.1016/j.toxlet.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/10/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
|
31
|
Novel cysteine- and albumin-adduct biomarkers to prove human poisoning with the pesticide oxydemeton-S-methyl. Toxicol Lett 2018; 294:122-134. [DOI: 10.1016/j.toxlet.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
32
|
Bioanalytical verification of V-type nerve agent exposure: simultaneous detection of phosphonylated tyrosines and cysteine-containing disulfide-adducts derived from human albumin. Anal Bioanal Chem 2018; 410:1463-1474. [DOI: 10.1007/s00216-017-0787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023]
|
33
|
Siegert M, Kranawetvogl A, Thiermann H, John H. N-Acetylcysteine as a chemical scavenger for sulfur mustard: New insights by mass spectrometry. Drug Test Anal 2017; 10:243-253. [DOI: 10.1002/dta.2299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Markus Siegert
- Department of Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology; Munich Germany
| |
Collapse
|
34
|
Kranawetvogl A, Küppers J, Gütschow M, Worek F, Thiermann H, Elsinghorst PW, John H. Identification of novel disulfide adducts between the thiol containing leaving group of the nerve agent VX and cysteine containing tripeptides derived from human serum albumin. Drug Test Anal 2017; 9:1192-1203. [DOI: 10.1002/dta.2144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Jim Küppers
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Paul W. Elsinghorst
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Central Institute of the Bundeswehr Medical Service Munich; Ingolstädter Landstrasse 102 85748 Garching Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| |
Collapse
|
35
|
Kranawetvogl A, Worek F, Thiermann H, John H. Modification of human serum albumin by the nerve agent VX: microbore liquid chromatography/electrospray ionization high-resolution time-of-flight tandem mass spectrometry method for detection of phosphonylated tyrosine and novel cysteine containing disulfide adducts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2191-2200. [PMID: 27490696 DOI: 10.1002/rcm.7707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Organophosphorus nerve agents still constitute a considerable threat to the health of military personnel and the civilian population. Long-term biomarkers are crucial for reliable verification of exposure to banned substances. Therefore, current research focuses on identification of endogenous protein targets showing covalent modifications by organophosphorus nerve agents (adducts). METHODS Purified human serum albumin and human plasma were incubated with the nerve agent VX followed by enzymatic proteolysis with pronase. Resulting peptide cleavage products were separated by microbore liquid chromatography (μLC) online coupled to positive electrospray ionization (ESI) with subsequent high-resolution time-of-flight tandem mass spectrometry (HR MS/MS) allowing identification of known and novel adducts. RESULTS In addition to known phosphonylation of various tyrosine residues, albumin was found to be modified at diverse cysteine residues by covalent attachment of the leaving group of VX. These novel disulfide adducts were cleaved from at least two regions of the intact protein as dipeptides containing cysteine and proline either as CP or PC. A rapid and sensitive method was developed for simultaneous detection of the diverse covalent modifications of human albumin by VX. CONCLUSIONS Identification of the novel leaving group adducts with human albumin expands the basic knowledge on molecular toxicology of the nerve agent VX. Furthermore, the presented μLC/ESI HR MS/MS method might be of relevance for verification of VX poisoning. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
36
|
John H, Willoh S, Hörmann P, Siegert M, Vondran A, Thiermann H. Procedures for Analysis of Dried Plasma Using Microsampling Devices to Detect Sulfur Mustard-Albumin Adducts for Verification of Poisoning. Anal Chem 2016; 88:8787-94. [DOI: 10.1021/acs.analchem.6b02199] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Sophia Willoh
- University of Applied Sciences and Arts Coburg, Department
of Applied Sciences, Coburg, Germany
| | - Philipp Hörmann
- University of Applied Sciences Weihenstephan-Triesdorf, Department of Biotechnology and Bioinformatics, Weihenstephan, Germany
| | - Markus Siegert
- Department
of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antje Vondran
- University of Applied Sciences and Arts Coburg, Department
of Applied Sciences, Coburg, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| |
Collapse
|