1
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Early predictors of brain injury, acute CO poisoning, neuroprotection of mild hypothermia. Am J Emerg Med 2023; 63:168. [PMID: 36283918 DOI: 10.1016/j.ajem.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
|
3
|
Zhang L, Sun Q, Xin Q, Qin J, Zhang L, Wu D, Gao G, Xia Y. Hyperbaric oxygen therapy mobilized circulating stem cells and improved delayed encephalopathy after acute carbon monoxide poisoning with up-regulation of brain-derived neurotrophic factor. Am J Emerg Med 2021; 42:95-100. [PMID: 33497900 DOI: 10.1016/j.ajem.2021.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Delayed encephalopathy (DE) is the most severe complication after acute carbon monoxide (CO) poisoning, which seriously affects the outcome of patients and leads to a high disability rate. Prior studies have shown that hyperbaric oxygen (HBO2) therapy is therapeutic for DE due to reducing immune-mediated neuropathology and thus improving cognitive performance. Methods In our present perspective study, five DE patients were treated regularly with HBO2 therapy. The mini-mental state examination (MMSE) and Barthel index (BI) were intermittently collected during their hospitalization for mental and physical status evaluation, the peripheral bloods were serially sampled to determine the concentration changes of circulating stem cells, as well as corresponding BDNF and neural markers. Results MMSE and BI showed series of improvements after multiple HBO2 therapies. The CD34+/CD90+ and CD34+/CD133+ dual positive cells, which were categorized as circulating stem cells, were observed an overall up-regulation since the beginning of the DE onset upon the application of HBO2 therapy. Characteristic neurotrophin BDNF, neural markers such as nestin and synaptophysin (SYP) were also up-regulated after exposure of HBO2. Conclusion The application of HBO2 therapy is of significance in improving the cognition of DE patients, along with mobilized circulating stem cells. We primarily infer that the CD34+/CD90+ and CD34+/CD133+ cells were mobilized by HBO2 exposure and have played a positive role in cognition improvement on DE patients by up-regulation of BDNF, nestin and SYP. The altering amount of circulating stem cells mobilized in peripheral blood could be a potential marker on predicting the outcome of DE.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qing Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China; Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Qun Xin
- Department of General Surgery, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Jiangnan Qin
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang 261000, Shandong, China
| | - Lu Zhang
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Di Wu
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Guangkai Gao
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China.
| | - Yujun Xia
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
4
|
Del Moral-Barbudo B, Blancas R, Ballesteros-Ortega D, Quintana-Díaz M, Martínez-González Ó. Current and research therapies for the prevention and treatment of delayed neurological syndrome associated with carbon monoxide poisoning: A narrative review. Hum Exp Toxicol 2020; 39:765-772. [PMID: 31965860 DOI: 10.1177/0960327120901572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe carbon monoxide (CO) poisoning causes fulminant deaths in common environment as well as neurological sequelae to survivors. Prevention of delayed neurological syndrome (DNS) after exposure to CO, the most important sequela, is based up to date on hyperbaric oxygen administration. Nevertheless, its use remains controversial due to the lack of evidence regarding its efficacy. The aim of this review is to report therapies under investigation for preventing or improving DNS, some of them with promising results in humans.
Collapse
Affiliation(s)
| | - R Blancas
- Alfonso X El Sabio University, Villanueva de la Cañada, Spain.,Critical Care Department, Del Tajo University Hospital, Aranjuez, Spain
| | - D Ballesteros-Ortega
- Alfonso X El Sabio University, Villanueva de la Cañada, Spain.,Critical Care Department, Puerta de Hierro University Hospital, Boadilla del Monte, Spain
| | - M Quintana-Díaz
- Alfonso X El Sabio University, Villanueva de la Cañada, Spain.,Critical Care Department, La Paz University Hospital, Madrid, Spain
| | - Ó Martínez-González
- Alfonso X El Sabio University, Villanueva de la Cañada, Spain.,Critical Care Department, Del Tajo University Hospital, Aranjuez, Spain
| |
Collapse
|
5
|
Kinoshita H, Türkan H, Vucinic S, Naqvi S, Bedair R, Rezaee R, Tsatsakis A. Carbon monoxide poisoning. Toxicol Rep 2020; 7:169-173. [PMID: 32015960 PMCID: PMC6992844 DOI: 10.1016/j.toxrep.2020.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) is the leading cause of poisoning deaths in many countries, including Japan. Annually, CO poisoning claims about 2000-5000 lives in Japan, which is over half of the total number of poisoning deaths. This paper discusses the physicochemical properties of CO and the toxicological evaluation of CO poisoning.
Collapse
Affiliation(s)
- Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hülya Türkan
- Ministry of national Defense, General Directorate of Health Services, Ankara, Turkey
| | - Slavica Vucinic
- National Poison Control Centre, Military Medical Academy, Medical Faculty, University of Defense, Belgrade, Serbia
| | - Shahab Naqvi
- Anaesthesiology and Intensive Care, Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Rafik Bedair
- Adult Critical Care Directorate, St. George’s University Hospitals, Blackshaw Road, London, SW17 9WL, United Kingdom
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aristides Tsatsakis
- Department of Toxicology & Forensic Sciences, Medical School, University of Crete, Voutes Campus, Heraklion, 71003, Greece
| |
Collapse
|
6
|
Eichhorn L, Thudium M, Jüttner B. The Diagnosis and Treatment of Carbon Monoxide Poisoning. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:863-870. [PMID: 30765023 DOI: 10.3238/arztebl.2018.0863] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The symptoms of carbon monoxide (CO) poisoning are nonspecific, ranging from dizziness and headache to unconsciousness and death. A German national guideline on the diagnosis and treatment of this condition is lacking at present. METHODS This review is based on a selective literature search in the PubMed and Cochrane databases, as well as on existing guidelines from abroad and expert recommendations on diagnosis and treatment. RESULTS The initiation of 100% oxygen breathing as early as possible is the most important treatment for carbon monoxide poisoning. In case of CO poisoning, the reduced oxygen-carrying capacity of the blood, impairment of the cellular respiratory chain, and immune-modulating processes can lead to tissue injury in the myocardium and brain even after lowering of the carboxyhemoglobin (COHb) concentration. In patients with severe carbon monoxide poisoning, an ECG should be obtained and biomarkers for cardiac ischemia should be measured. Hyperbaric oxygen therapy (HBOT) should be critically considered and initiated within six hours in patients with neurologic deficits, unconsciousness, cardiac ischemia, pregnancy, and/or a very high COHb concentration. At present, there is no general recommendation for HBOT, in view of the heterogeneous state of the evidence from multiple trials. Therapeutic decision-making is directed toward the avoidance of sequelae such as cognitive dysfunction and cardiac complications, and the reduction of mortality. Smoke intoxication must be considered in the differential diagnosis. The state of the evidence on the diagnosis and treatment of this condition is not entirely clear. Alternative or supplementary pharmacological treatments now exist only on an experimental basis. CONCLUSION High-quality, prospective, randomized trials that would enable a definitive judgment of the efficacy of HBOT are currently lacking.
Collapse
Affiliation(s)
- Lars Eichhorn
- Department of Anaesthesiology and Intensive Care University Hospital Bonn (UKB), Bonn Clinic for Anesthesiology and Intensive Care Medicine, Hannover Medical School
| | | | | |
Collapse
|
7
|
LUO ML, LI HJ, MA LC, JIANG Y. Observation on promoting resuscitation in the patients with coma of acute carbon monoxide poisoning by acupuncture combined with hyperbaric oxygen. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2019. [DOI: 10.1016/j.wjam.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Amantadine Combines Astroglial System Xc - Activation with Glutamate/NMDA Receptor Inhibition. Biomolecules 2019; 9:biom9050191. [PMID: 31108896 PMCID: PMC6572554 DOI: 10.3390/biom9050191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023] Open
Abstract
A glutamate/NMDA receptor (NMDA-R) antagonist, amantadine (AMA) exhibits a broad spectrum of clinically important properties, including antiviral, antiparkinsonian, neuroprotective, neuro-reparative and cognitive-enhancing effects. However, both clinical and pre-clinical studies have demonstrated that noncompetitive NMDA-R antagonists induce severe schizophrenia-like cognitive deficits. Therefore, this study aims to clarify the clinical discrepancy between AMA and noncompetitive NMDA-R antagonists by comparing the effects of AMA with those of a noncompetitive NMDA-R antagonist, MK801, on rat tripartite glutamatergic synaptic transmission using microdialysis and primary cultured astrocytes. Microdialysis study demonstrated that the stimulatory effects of AMA on L-glutamate release differed from those of MK801 in the globus pallidus, entorhinal cortex and entopeduncular nucleus. The stimulatory effect of AMA on L-glutamate release was modulated by activation of cystine/glutamate antiporter (Sxc). Primary cultured astrocytes study demonstrated that AMA also enhanced glutathione synthesis via Sxc activation. Furthermore, carbon-monoxide induced damage of the astroglial glutathione synthesis system was repaired by AMA but not MK801. Additionally, glutamate/AMPA receptor (AMPA-R) antagonist, perampanel enhanced the protective effects of AMA. The findings of microdialysis and cultured astrocyte studies suggest that a combination of Sxc activation with inhibitions of ionotropic glutamate receptors contributes to neuroprotective, neuro-reparative and cognitive-enhancing activities that can mitigate several neuropsychiatric disorders.
Collapse
|
9
|
N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson's Disease and in MPP +-Induced Neurons via Promoting the Conversion of proNGF to NGF. Mol Neurobiol 2017; 55:2258-2267. [PMID: 28321769 DOI: 10.1007/s12035-017-0486-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Insufficient production of nerve growth factor (NGF) is implicated in Parkinson's disease (PD). We recently discovered that caffeic acid derivative N-propargyl caffeamide (PACA) not only potentiated NGF-induced neurite outgrowth but also attenuated 6-hydroxydopamine neurotoxicity in neuronal culture. The aim of the present study was to investigate whether PACA could increase NGF levels against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in a mouse PD model. We induced parkinsonism in mice by intraperitoneal injection of MPTP for seven consecutive days. Animal motor functions were assessed by rotarod test and pole test. Our results showed that PACA ameliorated motor impairments in MPTP-challenged mice. Based on Western blot analysis and/or immunofluorescence staining of NGF and tyrosine hydroxylase (TH), PACA preserved TH levels in the midbrain substantia nigra pars compacta. PACA also increased NGF expression while it decreased proNGF accumulation. Interestingly, NGF was widely induced in the midbrains including astrocytes. To elucidate the mechanisms by which PACA induces NGF, we focused on the effects of PACA on two neurotrophic signaling pathways, the PI3K and MEK pathways. We found that PACA induced the phosphorylation of Akt, ERK, and CREB against MPTP-mediated alterations. Importantly, PACA increased NGF levels and subsequently induced TrkA activation in MPTP-treated mice. Consistently, PACA also increased NGF levels in dopaminergic PC12 cells and primary rat midbrain neurons against N-methyl-4-phenylpyridinium iodide (MPP+) toxicity. ERK and PI3K inhibitors attenuated the effects of PACA on NGF levels. Collectively, our results suggest that PACA may rescue NGF insufficiency via sequential activation of PI3K/Akt, ERK1/2, and CREB signaling pathways. Graphical Abstract ᅟ.
Collapse
|
10
|
Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes. Biochem Res Int 2017; 2017:5839762. [PMID: 28261501 PMCID: PMC5312051 DOI: 10.1155/2017/5839762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
Objective. To observe the protective effect of edaravone (Eda) on astrocytes after prolonged exposure to carbon monoxide (CO) and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.
Collapse
|