1
|
Zhao Y, Huang H, Lv N, Huang C, Chen H, Xing H, Guo C, Li N, Zhao D, Chen X, Zhang Y. Glutathione S-Transferases Mediate In Vitro and In Vivo Inactivation of Genipin: Implications for an Underlying Detoxification Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2399-2410. [PMID: 36705628 DOI: 10.1021/acs.jafc.2c08175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yulin Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Ning Lv
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Chunyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando32827, United States
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
2
|
Potęga A, Kosno M, Mazerska Z. Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. J Pharm Anal 2022; 11:791-798. [PMID: 35028185 PMCID: PMC8740389 DOI: 10.1016/j.jpha.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Unsymmetrical bisacridines (UAs) are a novel potent class of antitumor-active therapeutics. A significant route of phase II drug metabolism is conjugation with glutathione (GSH), which can be non-enzymatic and/or catalyzed by GSH-dependent enzymes. The aim of this work was to investigate the GSH-mediated metabolic pathway of a representative UA, C-2028. GSH-supplemented incubations of C-2028 with rat, but not with human, liver cytosol led to the formation of a single GSH-related metabolite. Interestingly, it was also revealed with rat liver microsomes. Its formation was NADPH-independent and was not inhibited by co-incubation with the cytochrome P450 (CYP450) inhibitor 1-aminobenzotriazole. Therefore, the direct conjugation pathway occurred without the prior CYP450-catalyzed bioactivation of the substrate. In turn, incubations of C-2028 and GSH with human recombinant glutathione S-transferase (GST) P1-1 or with heat-/ethacrynic acid-inactivated liver cytosolic enzymes resulted in the presence or lack of GSH conjugated form, respectively. These findings proved the necessary participation of GST in the initial activation of the GSH thiol group to enable a nucleophilic attack on the substrate molecule. Another C-2028-GSH S-conjugate was also formed during non-enzymatic reaction. Both GSH S-conjugates were characterized by combined liquid chromatography/tandem mass spectrometry. Mechanisms for their formation were proposed. The ability of C-2028 to GST-mediated and/or direct GSH conjugation is suspected to be clinically important. This may affect the patient's drug clearance due to GST activity, loss of GSH, or the interactions with GSH-conjugated drugs. Moreover, GST-mediated depletion of cellular GSH may increase tumor cell exposure to reactive products of UA metabolic transformations. We investigated the GSH-mediated metabolic pathway of antitumor bisacridine C-2028. Non-enzymatic and GST-catalyzed GSH conjugation of C-2028 was observed. The action of human recombinant GSTP1-1 in C-2028 metabolism was proved. GSH conjugation occurred without the prior CYP450-mediated activation of C-2028. GSH conjugation of C-2028 molecule took place on the system containing nitro group.
Collapse
|
3
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Mitochondrial stress response in drug-induced liver injury. Mol Biol Rep 2021; 48:6949-6958. [PMID: 34432218 DOI: 10.1007/s11033-021-06674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) caused by the ingestion of medications, herbs, chemicals or dietary supplements, is a clinically widespread health problem. The underlying mechanism of DILI is the formation of reactive metabolites, which trigger mitochondrial oxidative stress and the opening of mitochondrial permeability transition (MPT) pores through direct toxicity or immune response, leading to cell inflammation, apoptosis, and necrosis. Traditionally, mitochondria play an indispensable role in maintaining the physiological and biochemical functions of cells by producing ATP and mediating intracellular signal transduction; drugs can typically stimulate the mitochondria and, in the case of sustained stress, can eventually cause impairment of mitochondrial function and metabolic activity. Meanwhile, the mitochondrial stress response, as an adaptive protective mechanism, occurs when mitochondrial homeostasis is threatened. In this review, we summarize the relevant frontier researches of the protective effects of mitochondrial stress response in DILI as well as the potential related mechanisms, thus providing some thoughts for the clinical treatment of DILI.
Collapse
|
5
|
Capinha L, Jennings P, Commandeur JNM. Bioactivation of trichloroethylene to three regioisomeric glutathione conjugates by liver fractions and recombinant human glutathione transferases: Species differences and implications for human risk assessment. Toxicol Lett 2021; 341:94-106. [PMID: 33539969 DOI: 10.1016/j.toxlet.2021.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Enzymatic conjugation of glutathione (GSH) to trichloroethylene (TCE) followed by catabolism to the corresponding cysteine-conjugate, S-(dichlorovinyl)-L-cysteine (DCVC), and subsequent bioactivation by renal cysteine conjugate beta-lyases is considered to play an important role in the nephrotoxic effects observed in TCE-exposed rat and human. In this study, it is shown for the first time that three regioisomers of GSH-conjugates of TCE are formed by rat and human liver fractions, namely S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione (1,2-cis-DCVG) and S-(2,2-dichlorovinyl)-glutathione (2,2-DCVG). In incubations of TCE with rat liver fractions their amounts decreased in order of 1,2-cis-DCVG > 1,2-trans-DCVG > 2,2-DCVG. Human liver cytosol showed a more than 10-fold lower activity of GSH-conjugation, with amounts of regioisomers decreasing in order 2,2-DCVG > 1,2-trans-DCVG > 1,2-cis-DCVG. Incubations with recombinant human GSTs suggest that GSTA1-1 and GSTA2-2 play the most important role in human liver cytosol. GSTP1-1, which produces regioisomers in order 1,2-trans-DCVG > 2,2-cis-DCVG > 1,2-cis-DCVG, is likely to contribute to extrahepatic GSH-conjugation of TCE. Analysis of the products formed by a beta-lyase mimetic model showed that both 1,2-trans-DCVC and 1,2-cis-DCVC are converted to reactive products that form cross-links between the model nucleophile 4-(4-nitrobenzyl)-pyridine (NBP) and thiol-species. No NBP-alkylation was observed with 2,2-DCVC corresponding to its low cytotoxicity and mutagenicity. The lower activity of GSH-conjugation of TCE by human liver fractions, in combination with the lower fraction of potential nephrotoxic and mutagenic 1,2-DCVG-isomers, suggest that humans are at much lower risk for TCE-associated nephrotoxic effects than rats.
Collapse
Affiliation(s)
- Liliana Capinha
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Nunes B, Daniel D, Canelas GG, Barros J, Correia AT. Toxic effects of environmentally realistic concentrations of diclofenac in organisms from two distinct trophic levels, Hediste diversicolor and Solea senegalensis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108722. [PMID: 32032725 DOI: 10.1016/j.cbpc.2020.108722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro/Departament of Biology of the University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar/Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - David Daniel
- Departamento de Biologia da Universidade de Aveiro/Departament of Biology of the University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Gisela Gonçalves Canelas
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa/Faculty of Health Sciences of Fernando Pessoa University, (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Joseane Barros
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto/Institute of Biomedical Sciences Abel Salazar of the University of Porto, (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alberto Teodorico Correia
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa/Faculty of Health Sciences of Fernando Pessoa University, (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental/Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Tian M, Zhao B, Martin FL, Morais CLM, Liu L, Huang Q, Zhang J, Shen H. Gene-environment interactions between GSTs polymorphisms and targeted epigenetic alterations in hepatocellular carcinoma following organochlorine pesticides (OCPs) exposure. ENVIRONMENT INTERNATIONAL 2020; 134:105313. [PMID: 31731000 DOI: 10.1016/j.envint.2019.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to environmental pollutant organochlorine pesticides (OCPs) and the role of tumour suppressor GSTs gene polymorphisms as well as epigenetic alterations have all been well reported in hepatocarcinogenesis. However, the interplay between environmental risk factors and polymorphic tumour suppressor genes or epigenetic factors in hepatocellular carcinoma (HCC) development remains ambiguous. Herein, we investigated the relationship of three GSTs polymorphisms (GSTT1 deletion, GSTM1 deletion, GSTP1 rs1695) as well as GSTP1 promoter region DNA methylation and HCC risk with a particular focus on the interaction with OCPs exposure among 90 HCC cases and 99 controls in a Chinese population. Serum samples were analysed for OCPs exposure employing gas chromatography coupled with mass selective detector (GC-MS). GSTs polymorphisms and epigenetic alterations were determined using high-resolution melting PCR (HRM PCR) and DNA sequencing. After adjusting for confounders (HBV infection, smoking, alcohol consumption, BMI, age, gender), OCPs exposure and GSTP1 methylation is significantly associated with elevated risk of HCC, while no significance is observed for GSTs polymorphisms. Moreover, the effects of OCPs exposure on HCC risk are more pronounced amongst GSTP1 (Ile/Val + Val/Val) and GSTP1 promoter methylation subjects than those who were GSTP1 (Ile/Ile) and unmethylated subjects. The interactions between OCPs exposure and GSTP1 genotype as well as GSTP1 epigenetic status are statistically significant. The current study demonstrates the importance of gene-environment interactions in the multifactorial development of HCC.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Francis L Martin
- Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Fulwood, Preston PR2 2HE, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Camilo L M Morais
- Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Fulwood, Preston PR2 2HE, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Motawi TK, Ahmed SA, El-Boghdady NA, Metwally NS, Nasr NN. Impact of betanin against paracetamol and diclofenac induced hepato-renal damage in rats. Biomarkers 2019; 25:86-93. [PMID: 31766895 DOI: 10.1080/1354750x.2019.1697365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Context: Paracetamol (PAR) and diclofenac (DF) are the most popular consumed analgesics and anti-inflammatory medications.Objective: This study aimed to explore the protective effect of betanin (Bet) against PAR or DF induced hepato-renal damage in rats.Methods: Rats were randomly divided into five groups: Normal control (NC) group rats were given saline only. PAR group rats received PAR (400 mg/kg). PAR/Bet treated group rats administered PAR (400 mg/kg) plus Bet (25 mg/kg). DF group rats received DF (10 mg/kg). DF/Bet treated group rats administered DF (10 mg/kg) plus Bet (25 mg/kg). All drugs were given by gavage for 28 consecutive days.Results: PAR and DF administration in high dose and long-time induced liver and kidney injury, disrupted serum lipid profile, enhanced serum levels of inflammatory and oxidative stress markers, triggered DNA fragmentation and caused drastic changes in the histopathological pictures of the two organs. Bet supplementation succeeded to ameliorate most of the biochemical changes and protected DNA from damage as obtained from comet assay. Histological features in H&E taken to different groups also mirrors this findings.Conclusion: Bet exerted a potential anti-inflammatory and antioxidant effect against hepato-renal damage induced by PAR or DF overconsumption.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samia A Ahmed
- Department of Therapeutic Chemistry, National Research Center, Giza, 12622, Egypt
| | - Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nadia S Metwally
- Department of Therapeutic Chemistry, National Research Center, Giza, 12622, Egypt
| | - Noha N Nasr
- Department of Therapeutic Chemistry, National Research Center, Giza, 12622, Egypt
| |
Collapse
|
9
|
Owumi SE, Dim UJ. Biochemical alterations in diclofenac-treated rats: Effect of selenium on oxidative stress, inflammation, and hematological changes. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319874359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated the effect of selenium (Sel), a trace element in diclofenac sodium (DCF), nonsteroidal anti-inflammatory drugs-induced hepatic and renal toxicities in adult rats. Five experimental groups namely control, DCF (10 mg/kg), Sel (0.125 mg/kg), DCF + Sel (0.125 mg/kg), and DCF + Sel (0.25 mg/kg) consisting of 10 rats each were orally treated for 7 consecutive days. Following killing, biomarkers of hepatic and renal toxicities, antioxidant enzyme levels, myeloperoxidase activity, nitric oxide levels, reactive oxygen and nitrogen species (RONS), and lipid peroxidation (LPO) were analyzed spectrophotometrically. Further, the concentration of tumor necrosis factor alpha (TNF-α) was assessed using enzyme-linked immunosorbent assay, and hematological indices: white blood cells (WBC), lymphocytes, and neutrophils and eosinophil counts. Results indicated that DCF-induced increases in biomarkers of hepatic and renal toxicity were significantly ( p < 0.05) lessened in serum of rats co-exposed to DCF and Sel in a dose-dependent manner. DCF mediated decrease in antioxidant status, and increases in RONS, LPO, and TNF-α levels were reduced ( p < 0.05) in the liver and kidney of rats co-exposed to DCF and Sel. Additionally, Sel reduced hematological abnormalities associated with DCF treatment. Light microscopic examination showed that the severity of histopathological lesions induced by DCF was lessened in rats co-exposed to DCF and Sel. Taken together, Sel supplementation mitigated DCF-induced oxidative stress, inflammation, and hematological abnormalities in the liver and kidney of treated rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uche J Dim
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
10
|
Li XQ, Grönberg G, Bangur EH, Hayes MA, Castagnoli N, Weidolf L. Metabolism of Strained Rings: Glutathione S-transferase-Catalyzed Formation of a Glutathione-Conjugated Spiro-azetidine without Prior Bioactivation. Drug Metab Dispos 2019; 47:1247-1256. [PMID: 31492694 DOI: 10.1124/dmd.119.088658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022] Open
Abstract
AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] is a melanin-concentrating hormone receptor 1 antagonist designed for the treatment of obesity. In this study, metabolite profiles of AZD1979 in human hepatocytes revealed a series of glutathione-related metabolites, including the glutathionyl, cysteinyl, cysteinylglycinyl, and mercapturic acid conjugates. The formation of these metabolites was not inhibited by coincubation with the cytochrome P450 (P450) inhibitor 1-aminobenzotriazole. In efforts to identify the mechanistic features of this pathway, investigations were performed to characterize the structure of the glutathionyl conjugate M12 of AZD1979 and to identify the enzyme system catalyzing its formation. Studies with various human liver subcellular fractions established that the formation of M12 was NAD(P)H-independent and proceeded in cytosol and S9 fractions but not in microsomal or mitochondrial fractions. The formation of M12 was inhibited by ethacrynic acid, an inhibitor of glutathione S-transferases (GSTs). Several human recombinant GSTs, including GSTA1, A2-2, M1a, M2-2, T1-1, and GST from human placenta, were incubated with AZD1979. All GSTs tested catalyzed the formation of M12, with GSTA2-2 being the most efficient. Metabolite M12 was purified from rat liver S9 incubations and its structure elucidated by NMR. These results establish that M12 is the product of the GST-catalyzed glutathione attack on the carbon atom α to the nitrogen atom of the strained spiro-azetidinyl moiety to give, after ring opening, the corresponding amino-thioether conjugate product, a direct conjugation pathway that occurs without the prior substrate bioactivation by P450. SIGNIFICANCE STATEMENT: The investigated compound, AZD1979, contains a 6-substituted-2-oxa-6-azaspiro[3.3]heptanyl derivative that is an example of strained heterocycles, including spiro-fused ring systems, that are widely used in synthetic organic chemistry. An unusual azetidinyl ring-opening reaction involving a nucleophilic attack by glutathione, which does not involve prior cytochrome P450-catalyzed bioactivation of the substrate and which is catalyzed by glutathione transferases, is reported. We propose a mechanism involving the protonated cyclic aminyl intermediate that undergoes nucleophilic attack by glutathione thiolate anion in this reaction, catalyzed by glutathione transferases.
Collapse
Affiliation(s)
- Xue-Qing Li
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Gunnar Grönberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Eva-Henriette Bangur
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Neal Castagnoli
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Lars Weidolf
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| |
Collapse
|
11
|
Klenk JM, Kontny LH, Escobedo-Hinojosa W, Nebel BA, Hauer B. Oxyfunctionalization of nonsteroidal anti-inflammatory drugs by filamentous-fungi. J Appl Microbiol 2019; 127:724-738. [PMID: 31173436 DOI: 10.1111/jam.14342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
AIMS We aimed to expand the microbial biocatalyst platform to generate essential oxyfunctionalized standards for pharmaceutical, toxicological and environmental research. In particular, we examined the production of oxyfunctionalized nonsteroidal anti-inflammatory drugs (NSAIDs) by filamentous-fungi. METHODS AND RESULTS Four NSAIDs; diclofenac, ibuprofen, naproxen and mefenamic acid were used as substrates for oxyfunctionalization in a biocatalytic process involving three filamentous-fungi strains; Beauveria bassiana, Clitocybe nebularis and Mucor hiemalis. Oxyfunctionalized metabolites that are major degradation intermediates formed by Cytochrome P450 monooxygenases in human metabolism were produced in isolated yields of up to 99% using 1 g l-1 of substrate. In addition, a novel compound, 3',4'-dihydroxydiclofenac, was produced by B. bassiana. Proteomic analysis identified CYP548A5 that might be responsible for diclofenac oxyfunctionalization in B. bassiana. CONCLUSIONS Efficient fungi catalysed oxyfunctionalization was achieved when using NSAIDs as substrates. High purities and isolated yields of the produced metabolites were achieved. SIGNIFICANCE AND IMPACT OF THE STUDY The lack of current efficient synthetic strategies for oxyfunctionalization of NSAIDs is a bottleneck to perform pharmacokinetic, pharmacodynamic and toxicological analysis for the pharmaceutical industry. Additionally, oxyfunctionalized derivatives are needed for tracking the fate and impact of such metabolites in the environment. Herein, we described a fungi catalysed process that surpasses previously reported strategies in terms of efficiency, to synthesize oxyfunctionalized NSAIDs.
Collapse
Affiliation(s)
- J M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - L H Kontny
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - W Escobedo-Hinojosa
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B A Nebel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - B Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 2017; 284:70-78. [PMID: 29203276 DOI: 10.1016/j.toxlet.2017.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.
Collapse
Affiliation(s)
- Katarzyna E Lazarska
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol 2017; 92:383-399. [PMID: 28762043 PMCID: PMC5773651 DOI: 10.1007/s00204-017-2036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify metabolic phenotypes with increased susceptibility to DILI. To this end, HepG2 cells with different expression levels of specific drug-metabolism enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, GSTM1 and UGT2B7) were exposed to nine drugs with reported hepatotoxicity. A panel of pre-lethal mechanistic parameters (mitochondrial superoxide production, mitochondrial membrane potential, ROS production, intracellular calcium concentration, apoptotic nuclei) was used. Significant differences were observed according to the level of expression and/or the combination of several drug-metabolism enzymes in the cells created ad hoc according to the enzymes implicated in drug toxicity. Additionally, the main mechanisms implicated in the toxicity of the compounds were also determined showing also differences between the different types of cells employed. This screening tool allowed to mimic the variability in drug metabolism in the population and showed a highly efficient system for predicting human DILI, identifying the metabolic phenotypes associated with increased DILI risk, and indicating the mechanisms implicated in their toxicity.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gabriela Pérez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
17
|
Zhang Y, den Braver-Sewradj SP, Vos JC, Vermeulen NPE, Commandeur JNM. Human glutathione S-transferases- and NAD(P)H:quinone oxidoreductase 1-catalyzed inactivation of reactive quinoneimines of amodiaquine and N-desethylamodiaquine: Possible implications for susceptibility to amodiaquine-induced liver toxicity. Toxicol Lett 2017; 275:83-91. [PMID: 28478157 DOI: 10.1016/j.toxlet.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023]
Abstract
Amodiaquine (AQ), an antimalarial drug, widely prescribed in endemic areas of Africa and Asia, is used in combination with artesunate as recommended by the WHO. However, due to its idiosyncratic hepatotoxicity and agranulocytosis, the therapeutic use has been discontinued in most countries. Oxidative bioactivation to protein-reactive quinonimines (QIs) by hepatic cytochrome P450s and myeloperoxidase (MPO) have been suggested to be important mechanisms underlying AQ idiosyncratic toxicity. However, the inactivation of the reactive QIs by detoxifying enzymes such as human glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreducatase 1 (NQO1) has not been characterized yet. In the present study, the activities of 15 recombinant human GSTs and NQO1 in the inactivation of reactive QIs of AQ and its pharmacological active metabolite, N-desethylamodiaquine (DEAQ) were investigated. The results showed that GSTP1-1, GSTA4-4, GSTM4-4, GSTM2-2 and GSTA2-2 (activity in decreasing order) were active isoforms in catalyzing GSH conjugation of reactive QIs of AQ and DEAQ. Additionally, NQO1 was shown to inactivate these QIs by reduction. Simulation of the variability of cytosolic GST-activity based on the hepatic GST contents from 22 liver donors, showed a large variation in cytosolic inactivation of QIs by GSH, especially at a reduced GSH-concentration. In conclusion, the present study demonstrates that a low hepatic expression of the active GSTs and NQO1 may increase the susceptibility of patients to AQ idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|