1
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Vieytes MR, Botana LM. In vitro assessment of emerging mycotoxins co-occurring in cheese: a potential health hazard. Arch Toxicol 2024; 98:4173-4186. [PMID: 39322822 DOI: 10.1007/s00204-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Some Penicillium strains used in cheese ripening produce emerging mycotoxins, notably roquefortine C (ROQC) and cyclopiazonic acid (CPA), as well as enniatins (ENNs) and beauvericin (BEA). Co-occurrence of these mycotoxins in natural samples has been reported worldwide, however, most studies focus on the toxicity of a single mycotoxin. In the present study, the effects of ROQC and CPA alone and in combination with BEA and ENNs A, A1, B, and B1 were analysed in human neuroblastoma cells. ROQC and CPA reduced cell viability, with IC50 values of 49.5 and 7.3 µM, respectively, and induced caspase-8-mediated apoptosis. When ROQC and CPA were binary combined with ENNs, an enhancement of their individual effects was observed. Furthermore, a clear synergism was produced when ROQC and CPA were mixed with the four ENNs. An additive effect was also described for the combination of CPA + ENNs (A, A1, B, B1) + BEA. Finally, the effects of commercial cheese extracts containing the mentioned mycotoxins were evaluated, finding a strong reduction in cell viability. These results suggest that the co-occurrence of emerging mycotoxins in natural matrices could pose a potential health risk.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
2
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Neurotoxic mechanisms of mycotoxins: Focus on aflatoxin B1 and T-2 toxin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124359. [PMID: 38866317 DOI: 10.1016/j.envpol.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Aflatoxin B1 (AFB1) and T-2 toxin are commonly found in animal feed and stored grain, posing a serious threat to human and animal health. Mycotoxins can penetrate brain tissue by compromising the blood-brain barrier, triggering oxidative stress and neuroinflammation, and leading to oxidative damage and apoptosis of brain cells. The potential neurotoxic mechanisms of AFB1 and T-2 toxin were discussed by summarizing the relevant research reports from the past ten years. AFB1 and T-2 toxin cause neuronal damage in the cerebral cortex and hippocampus, leading to synaptic transmission dysfunction, ultimately impairing the nervous system function of the body. The toxic mechanism is related to excessive reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, apoptosis, autophagy, and an exaggerated inflammatory response. After passing through the blood-brain barrier, toxins can directly affect glial cells, alter the activation state of microglia and astrocytes, thereby promoting brain inflammation, disrupting the blood-brain barrier, and influencing the synaptic transmission process. We discussed the diverse effects of various concentrations of toxins and different modes of exposure on neurotoxicity. In addition, toxins can also cross the placental barrier, causing neurotoxic symptoms in offspring, as demonstrated in various species. Our goal is to uncover the underlying mechanisms of the neurotoxicity of AFB1 and T-2 toxin and to provide insights for future research, including investigating the impact of mycotoxins on interactions between microglia and astrocytes.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
3
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
4
|
Al Khoury C, Tokajian S, Nemer N, Nemer G, Rahy K, Thoumi S, Al Samra L, Sinno A. Computational Applications: Beauvericin from a Mycotoxin into a Humanized Drug. Metabolites 2024; 14:232. [PMID: 38668360 PMCID: PMC11051850 DOI: 10.3390/metabo14040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Drug discovery was initially attributed to coincidence or experimental research. Historically, the traditional approaches were complex, lengthy, and expensive, entailing costly random screening of synthesized compounds or natural products coupled with in vivo validation largely depending on the availability of appropriate animal models. Currently, in silico modeling has become a vital tool for drug discovery and repurposing. Molecular docking and dynamic simulations are being used to find the best match between a ligand and a molecule, an approach that could help predict the biomolecular interactions between the drug and the target host. Beauvericin (BEA) is an emerging mycotoxin produced by the entomopathogenic fungus Beauveria bassiana, being originally studied for its potential use as a pesticide. BEA is now considered a molecule of interest for its possible use in diverse biotechnological applications in the pharmaceutical industry and medicine. In this manuscript, we provide an overview of the repurposing of BEA as a potential therapeutic agent for multiple diseases. Furthermore, considerable emphasis is given to the fundamental role of in silico techniques to (i) further investigate the activity spectrum of BEA, a secondary metabolite, and (ii) elucidate its mode of action.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos Campus, Byblos P.O. Box 36, Lebanon
| | - Nabil Nemer
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Kelven Rahy
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Lynn Al Samra
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| |
Collapse
|
5
|
Berntssen MHG, Fjeldal PG, Gavaia PJ, Laizé V, Hamre K, Donald CE, Jakobsen JV, Omdal Å, Søderstrøm S, Lie KK. Dietary beauvericin and enniatin B exposure cause different adverse health effects in farmed Atlantic salmon. Food Chem Toxicol 2023; 174:113648. [PMID: 36736876 DOI: 10.1016/j.fct.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The extensive use of plant ingredients in novel aquafeeds have introduced mycotoxins to the farming of seafood. The emerging enniatin B (ENNB) and beauvericin (BEA) mycotoxins have been found in the novel aquafeeds and farmed fish. Little is known about the potential toxicity of ENNs and BEA in farmed fish and their feed-to-organ transfer. Atlantic salmon (Salmo salar) pre-smolt (75.3 ± 8.10 g) were fed four graded levels of spiked chemical pure ENNB or BEA feeds for three months, in triplicate tanks. Organismal adverse health end-point assessment included intestinal function (protein digestibility), disturbed hematology (red blood cell formation), bone formation (spinal deformity), overall energy use (feed utilization), and lipid oxidative status (vitamin E). Both dietary BEA and ENNB had a low (<∼0.01%) transfer to organs (kidney > liver > brain > muscle), with a higher transfer for ENNB compared to BEA. BEA caused a growth reduction combined with a decreased protein digestion and feed conversion rate- ENNB caused a stunted growth, unrelated to feed utilization capacity. In addition, ENNB caused anemia while BEA gave an oxidative stress response. Lower bench-mark dose regression assessment showed that high background levels of ENNB in commercial salmon feed could pose a risk for animal health, but not in the case of BEA.
Collapse
Affiliation(s)
| | - P G Fjeldal
- Institute of Marine Research, Bergen, Norway
| | - P J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - V Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - K Hamre
- Institute of Marine Research, Bergen, Norway
| | - C E Donald
- Institute of Marine Research, Bergen, Norway
| | - J V Jakobsen
- Cargill Aqua Nutrition Innovation Center, Dirdal, Norway
| | - Å Omdal
- Institute of Marine Research, Bergen, Norway
| | | | - K K Lie
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
6
|
The role of pumpkin pulp extract carotenoids against mycotoxin damage in the blood brain barrier in vitro. ACTA ACUST UNITED AC 2021; 72:173-181. [PMID: 34587668 PMCID: PMC8576748 DOI: 10.2478/aiht-2021-72-3541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022]
Abstract
Some mycotoxins such as beauvericin (BEA), ochratoxin A (OTA), and zearalenone (ZEA) can cross the blood brain barrier, which is why we tested the anti-inflammatory action of a pumpkin carotenoid extract (from the pulp) against these mycotoxins and their combinations (OTA+ZEA and OTA+ZEA+BEA) on a blood brain barrier model with co-cultured ECV304 and C6 cells using an untargeted metabolomic approach. The cells were added with mycotoxins at a concentration of 100 nmol/L per mycotoxin and pumpkin carotenoid extract at 500 nmol/L. For control we used only vehicle solvent (cell control) or vehicle solvent with pumpkin extract (extract control). After two hours of exposure, samples were analysed with HPLC-ESI-QTOF-MS. Metabolites were identified against the Metlin database. The proinflammatory arachidonic acid metabolite eoxin (14,15-LTE4) showed lower abundance in ZEA and BEA+OTA+ZEA-treated cultures that also received the pumpkin extract than in cultures that were not treated with the extract. Another marker of inflammation, prostaglandin D2-glycerol ester, was only found in cultures treated with OTA+ZEA and BEA+OTA+ZEA but not in the ones that were also treated with the pumpkin extract. Furthermore, the concentration of the pumpkin extract metabolite dihydromorelloflavone significantly decreased in the presence of mycotoxins. In conclusion, the pumpkin extract showed protective activity against cellular inflammation triggered by mycotoxins thanks to the properties pertinent to flavonoids contained in the pulp.
Collapse
|
7
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Gegunde S, Vieytes MR, Botana LM. Single and combined effects of regulated and emerging mycotoxins on viability and mitochondrial function of SH-SY5Y cells. Food Chem Toxicol 2021; 154:112308. [PMID: 34062223 DOI: 10.1016/j.fct.2021.112308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Co-occurrence of emerging and regulated mycotoxins in contaminated samples has been widely documented, but studies about their combined toxicity are scarce. In this report, the regulated mycotoxins deoxynivalenol, fumonisin B1 and zearalenone, and the emerging ones enniatin A, enniatin B and beauvericin were tested in SH-SY5Y human neuroblastoma cells. Their individual and binary combined effects on cell viability and mitochondrial function were evaluated. The results with individual mycotoxins revealed that deoxynivalenol and emerging mycotoxins were the most damaging to neuronal cells, presenting IC50 values between 0.35 and 2.4 μM. Interestingly, non-regulated mycotoxins triggered apoptosis by affecting to mitochondrial membrane potential. However, when regulated and non-regulated mycotoxins were binary mixed, antagonistic effects were found in all cases. Finally, cow feed and milk extracts were analysed by UHPLC-MS/MS, detecting the presence of several mycotoxins included in this study. These extracts were tested in neuroblastoma cells, and damaging effects on cell viability were found. Although binary combinations of mycotoxins produced antagonistic effects, their mixture in natural matrixes induces greater effects than expected. Therefore, it would be interesting to explore the matrix influence on mycotoxin toxicity, and to continue studying the neurotoxic mechanism of action of emerging mycotoxins, as they could be a health hazard.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, 27002, Spain
| |
Collapse
|
8
|
Agahi F, Juan-García A, Font G, Juan C. Study of enzymatic activity in human neuroblastoma cells SH-SY5Y exposed to zearalenone's derivates and beauvericin. Food Chem Toxicol 2021; 152:112227. [PMID: 33878370 DOI: 10.1016/j.fct.2021.112227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Beauvericin (BEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), are produced by several Fusarium species that contaminate cereal grains. These mycotoxins can cause cytotoxicity and neurotoxicity in various cell lines and they are also capable of produce oxidative stress at molecular level. However, mammalian cells are equipped with a protective endogenous antioxidant system formed by no-enzymatic antioxidant and enzymatic protective systems such as glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). The aim of this study was evaluating the effects of α-ZEL, β-ZEL and BEA, on enzymatic GPx, GST, CAT and SOD activity in human neuroblastoma cells using the SH-SY5Y cell line, over 24 h and 48 h with different treatments at the following concentration range: from 1.56 to 12.5 μM for α-ZEL and β-ZEL, from 0.39 to 2.5 μM for BEA, from 1.87 to 25 μM for binary combinations and from 3.43 to 27.5 μM for tertiary combination. SH-SY5Y cells exposed to α-ZEL, β-ZEL and BEA revealed an overall increase in the activity of i) GPx, after 24 h of exposure up to 24-fold in individual treatments and 15-fold in binary combination; ii) GST after 24 h of exposure up to 10-fold (only in combination forms), and iii) SOD up to 3.5- and 5-fold in individual and combined treatment, respectively after 48 h of exposure. On the other hand, CAT activity decreased significantly in all treatments up to 92% after 24 h except for β-ZEL + BEA, which revealed the opposite.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
9
|
Agahi F, Álvarez-Ortega N, Font G, Juan-García A, Juan C. Oxidative stress, glutathione, and gene expression as key indicators in SH-SY5Y cells exposed to zearalenone metabolites and beauvericin. Toxicol Lett 2020; 334:44-52. [DOI: 10.1016/j.toxlet.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
|
10
|
Montesano D, Juan-García A, Mañes J, Juan C. Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem Toxicol 2020; 141:111414. [PMID: 32387444 DOI: 10.1016/j.fct.2020.111414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Goji berry has recently been introduced in Mediterranean diet and its consumption is increasing. This study aims to determine cytoprotection of lutein (LUT), zeaxanthin (ZEAX) and goji berry extract (GBE) rich in carotenoids against Beauvericin (BEA)-induced cytotoxicity on SH-SY5Y neuroblastoma cells. Both carotenoids and GBE showed cytoprotective effects. Cytoprotection was evaluated by simultaneous combination of the two xanthophylls LUT and ZEAX with BEA, as well as using pre-treatment assays. The highest protective effect occurred in 16%, 24% and 12% respectively for LUT, ZEAX and LUT + ZEAX incubating simultaneously with BEA, while by pre-treatment assay LUT showed a cytoprotection effect over 30% and ZEAX alone or LUT + ZEAX promoted only a slight cytoprotection (<10%). Pre-treatment assays with GBE, showed a cytoprotection, between 3 and 20%, for BEA concentrations ranging from 0.1 to 6.25 μM, whereas no protective effect was observed when the cells were simultaneously incubated with GBE and BEA. Finally, by means of CI-isobologram method, the interaction between LUT, ZEAX and BEA were evaluated, and the results showed an synergism effect for almost all combinations tested. The data presented shows a option of using goji berries to potentially mitigate the toxicity of beauvericin eventually present in foods.
Collapse
Affiliation(s)
- Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Via San Costanzo 1, 06126, Perugia, Italy.
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
11
|
Arroyo-Manzanares N, Peñalver-Soler R, Campillo N, Viñas P. Dispersive Solid-Phase Extraction using Magnetic Carbon Nanotube Composite for the Determination of Emergent Mycotoxins in Urine Samples. Toxins (Basel) 2020; 12:E51. [PMID: 31952350 PMCID: PMC7020456 DOI: 10.3390/toxins12010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
Dispersive magnetic solid-phase extraction (DMSPE) has received growing attention for sample treatment preconcentration prior to the separation of analytes due to its many advantages. In the present work, the potential of DMSPE for the determination of emergent mycotoxins (enniatins A, A1, B and B1, and beauvericin) is investigated for the first time. Different magnetic nanoparticles were tested and a magnetic multiwalled carbon nanotube (Fe3O4@MWCNT) composite was selected for the extraction and preconcentration of the five target mycotoxins in human urine samples before their analysis by ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS). The nanocomposite was characterized by energy dispersive X-ray spectrometry, scanning electron microscopy, Fourier transform infrared spectrophotometry, and X-ray diffraction. Several parameters affecting the adsorption and desorption of DMSPE steps were optimized and the method was fully validated. Due to a matrix effect, matrix-matched calibration curves were necessary to carry out quantification. In this way, limits of quantification of between 0.04 and 0.1 μg/L, relative standard deviation values lower than 12% and recoveries between 89.3% and 98.9% were obtained. Finally, a study of the reuse of the Fe3O4@MWCNT composite was carried out, confirming that it can be reused at least four times.
Collapse
Affiliation(s)
| | | | | | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, E-30100 Murcia, Spain; (N.A.-M.); (R.P.-S.); (N.C.)
| |
Collapse
|
12
|
Ornelis V, Rajkovic A, Decleer M, Sas B, De Saeger S, Madder A. Counteracting in Vitro Toxicity of the Ionophoric Mycotoxin Beauvericin-Synthetic Receptors to the Rescue. J Org Chem 2019; 84:10422-10435. [PMID: 31393120 DOI: 10.1021/acs.joc.9b01665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beauvericin (BEA) and enniatins are toxic ionophoric cyclodepsipeptides that mainly occur in grains. As such, their presence in food commodities poses a concern for public health. To date, despite recent European Food Safety Authority emphasis on the need for more data to evaluate long-term toxicity effects, no suitable affinity reagents are available to detect the presence of BEA and derivatives in food samples. We here report on the synthesis of a small library of artificial receptors with varying cavity sizes and different hydrophobic building blocks. Immobilization of one of the receptors on solid support resulted in a strong retention of beauvericin, thus revealing promising properties as solid-phase extraction material for sample pretreatment. Furthermore, treatment of HepG2 cells with the most promising receptor markedly reduced beauvericin-induced cytotoxicity, hinting toward the possibility of using synthetic receptors as antidotes against ionophoric toxins.
Collapse
Affiliation(s)
- Vincent Ornelis
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | | | - Marlies Decleer
- Department of Bioanalysis, Laboratory of Food Analysis , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | | | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| |
Collapse
|
13
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
14
|
Krug I, Behrens M, Esselen M, Humpf HU. Transport of enniatin B and enniatin B1 across the blood-brain barrier and hints for neurotoxic effects in cerebral cells. PLoS One 2018; 13:e0197406. [PMID: 29768483 PMCID: PMC5955586 DOI: 10.1371/journal.pone.0197406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/01/2018] [Indexed: 12/01/2022] Open
Abstract
Enniatins are common contaminants of food and feed and belong to the group of the "emerging" mycotoxins, which are produced by various Fusarium species. Although a wide range of toxic effects, like antibacterial, antifungal, insecticidal and cytotoxic properties, have been described in vitro, so far, no cases of mycotoxicosis connected to enniatins in vivo are reported. Among this group of mycotoxins, enniatin B and enniatin B1 are the most prevalent compounds and therefore are present in the human diet. Enniatins can reach systemic circulation, thus, the investigation of possible neurotoxic effects is of importance. Different cerebral cells were used to address effects on cell death having an impact on the blood-brain barrier. The influence of enniatin B and enniatin B1 on cellular viability was examined via Cell Counting kit-8 assay (CCK-8) in three different cell types of the blood-brain barrier: porcine brain capillary endothelial cells (PBCEC), human brain microvascular endothelial cells (HBMEC) and human astrocytoma cells (CCF-STTG1). CCF-STTG1 cells were more sensitive to enniatin B (IC50 = 8.9 μM) and enniatin B1 (IC50 = 4.4 μM) than both endothelial cell types. In CCF-STTG1 cells, caspase-3 activation and lactate dehydrogenase (LDH) release were evaluated. Both compounds did not induce any LDH release and only enniatin B increased caspase-3 activity as a marker for apoptosis. The transport kinetics of enniatin B and enniatin B1 across the blood-brain barrier in vitro were evaluated using PBCEC, cultivated on Transwell® filter inserts. Analysis of the apical and the basolateral compartment by high performance liquid chromatography-mass spectrometry revealed high influx rates for enniatin B and enniatin B1. Thus, both compounds can reach the brain parenchyma where neurotoxic effects cannot be ruled out.
Collapse
Affiliation(s)
- Isabel Krug
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, Münster, Germany
| |
Collapse
|
15
|
Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7052-7070. [PMID: 27599910 DOI: 10.1021/acs.jafc.6b03413] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Modern analytical techniques can determine a multitude of fungal metabolites contaminating food and feed. In addition to known mycotoxins, for which maximum levels in food are enforced, also currently unregulated, so-called "emerging mycotoxins" were shown to occur frequently in agricultural products. The aim of this review is to critically discuss the relevance of selected emerging mycotoxins to food and feed safety. Acute and chronic toxicity as well as occurrence data are presented for enniatins, beauvericin, moniliformin, fusaproliferin, fusaric acid, culmorin, butenolide, sterigmatocystin, emodin, mycophenolic acid, alternariol, alternariol monomethyl ether, and tenuazonic acid. By far not all of the detected compounds are toxicologically relevant at their naturally occurring levels and are therefore of little or no health concern to consumers. Still, gaps in knowledge have been identified for several compounds. These gaps should be closed by the scientific community in the coming years to allow a proper risk assessment.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center , Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center , Technopark 1, 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
16
|
Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins (Basel) 2017; 9:toxins9080251. [PMID: 28820481 PMCID: PMC5577585 DOI: 10.3390/toxins9080251] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites with bioaccumulation levels leading to their carry-over into animal fluids, organs, and tissues. As a consequence, mycotoxin determination in biological samples from humans and animals has been reported worldwide. Since most mycotoxins show toxic effects at low concentrations and considering the extremely low levels present in biological samples, the application of reliable detection methods is required. This review summarizes the information regarding the studies involving mycotoxin determination in biological samples over the last 10 years. Relevant data on extraction methodology, detection techniques, sample size, limits of detection, and quantitation are presented herein. Briefly, liquid-liquid extraction followed by LC-MS/MS determination was the most common technique. The most analyzed mycotoxin was ochratoxin A, followed by zearalenone and deoxynivalenol—including their metabolites, enniatins, fumonisins, aflatoxins, T-2 and HT-2 toxins. Moreover, the studies were classified by their purpose, mainly focused on the development of analytical methodologies, mycotoxin biomonitoring, and exposure assessment. The study of tissue distribution, bioaccumulation, carry-over, persistence and transference of mycotoxins, as well as, toxicokinetics and ADME (absorption, distribution, metabolism and excretion) were other proposed goals for biological sample analysis. Finally, an overview of risk assessment was discussed.
Collapse
|
17
|
Stanciu O, Juan C, Miere D, Loghin F, Mañes J. Analysis of enniatins and beauvericin by LC-MS/MS in wheat-based products. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1288661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Oana Stanciu
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of València, Burjassot, València, Spain
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of València, Burjassot, València, Spain
| |
Collapse
|