1
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Langston JL, Moffett MC, Pennington MR, Myers TM. Pharmacokinetics and pharmacodynamics of standard nerve agent medical countermeasures in Göttingen Minipigs. Toxicol Lett 2024; 397:103-116. [PMID: 38703967 DOI: 10.1016/j.toxlet.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Animal research continues to serve a critical role in the testing and development of medical countermeasures. The Göttingen minipig, developed for laboratory research, may provide many benefits for addressing research questions within chemical defense. Targeted development of the Göttingen minipig model could reduce reliance upon non-human primates, and improve study design, statistical power, and throughput to advance medical countermeasures for regulatory approval and fielding. In this vein, we completed foundational pharmacokinetics and physiological safety studies of intramuscularly administered atropine sulfate, pralidoxime chloride (2-PAM), and diazepam across a broad range of doses (1-6 autoinjector equivalent) using adult male Göttingen minipigs (n=11; n=4-8/study) surgically implanted with vascular access ports and telemetric devices to monitor cardiovascular, respiratory, arterial pressure, and temperature signals. Pharmacokinetic data were orderly and the concentration maximum mirrored available human data at comparably scaled doses clearly for atropine, moderately for 2-PAM, and poorly for diazepam. Time to peak concentration approximated 2, 7, and 20 min for atropine, 2-PAM, and diazepam, respectively, and the elimination half-life of these drugs approximated 2 hr (atropine), 3 hr (2-PAM), and 8 hr (diazepam). Atropine sulfate dose-dependently increased the magnitude and duration of tachycardia and decreased the PR and ST intervals (consistent with findings obtained from other species). Mild hypothermia was observed at the highest diazepam dose. Göttingen minipigs appear to provide a ready and appropriate large animal alternative to non-human primates, and further development and evaluation of novel nerve agent medical countermeasures and treatment strategies in this model are justified.
Collapse
Affiliation(s)
- Jeffrey L Langston
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Mark C Moffett
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - M Ross Pennington
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Todd M Myers
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Pharmaceutical Sciences Department, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
3
|
Lumley L, Du F, Marrero-Rosado B, Stone M, Keith ZM, Schultz C, Whitten K, Walker K, Acon-Chen C, Wright L, Shih TM. Soman-induced toxicity, cholinesterase inhibition and neuropathology in adult male Göttingen minipigs. Toxicol Rep 2021; 8:896-907. [PMID: 33996503 PMCID: PMC8095108 DOI: 10.1016/j.toxrep.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 μg/kg, with 95 % confidence limits of 3.6 and 6.3 μg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 μg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.
Collapse
Affiliation(s)
- Lucille Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Fu Du
- FD NeuroTechnologies, Inc., Columbia, MD, United States
| | - Brenda Marrero-Rosado
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Michael Stone
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Zora-Maya Keith
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Caroline Schultz
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kimberly Whitten
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katie Walker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cindy Acon-Chen
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Linnzi Wright
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Tsung-Ming Shih
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
4
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
5
|
Rubin KM, Goldberger BA, Garrett TJ. Detection of Chemical Weapon Nerve Agents in Bone by Liquid Chromatography-Mass Spectrometry. J Anal Toxicol 2020; 44:391-401. [PMID: 32103269 DOI: 10.1093/jat/bkz118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recently proposed model for the incorporation of xenobiotics of forensic interest into the human skeleton suggests nerve agent metabolites may incorporate into bone at relatively elevated concentrations based on their unique chemical properties. To test the hypothesis that nerve agent metabolites interact with bone, methods for the extraction, isolation and semi-quantitative detection of nerve agent metabolites (MPA, EMPA, IMPA, iBuMPA, CMPA and PMPA, corresponding to the nerve agents VX, Russian VX, sarin, cyclosarin and soman, respectively) from osseous tissue were developed using liquid chromatography-mass spectrometry with both quadrupole time-of-flight and triple quadrupole (QqQ) instruments. The optimized methods were validated on the QqQ instrument. Despite high ion suppression, the achieved limits of detection (5-20 pg/g for four analytes; 350 pg/g for the fifth analyte) were lower than many of those published for the same analytes in other biomatrices, including serum and urine. These methods were tested on the skeletal remains of minipigs exposed to the chemical weapon VX in vivo. The VX metabolite was detected in multiple minipig bone samples; to the authors' knowledge, this is the first time in vivo nerve agent exposure has been detected from bone. Further, detected concentrations and diaphyseal-to-epiphyseal area count ratios reflect animal exposure history. Although the results are limited, they are promising, indicating that nerve agent metabolites may interact with bone as a pharmacokinetic compartment and can be extracted from bone postmortem. Additional studies, assessing the effects of different agents, exposure pathways and taphonomic variables, are needed; however, these results suggest the method may be used with human bone to detect use of chemical weapons from postmortem biomatrices even well after a suspected attack. More general implications for both nerve agent toxicology and skeletal toxicology are also discussed.
Collapse
Affiliation(s)
- Katie M Rubin
- Department of Anthropology, University of Florida, 1112 Turlington Hall, Gainesville, FL 32611.,Defense POW/MIA Accounting Agency, 590 Moffet Street, Joint Base Pearl Harbor-Hickam, HI 96853
| | - Bruce A Goldberger
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, 4800 SW 35th Drive, Gainesville, FL 32608
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, 4800 SW 35th Drive, Gainesville, FL 32608
| |
Collapse
|
6
|
McGarry KG, Schill KE, Winters TP, Lemmon EE, Sabourin CL, Harvilchuck JA, Moyer RA. Characterization of Cholinesterases From Multiple Large Animal Species for Medical Countermeasure Development Against Chemical Warfare Nerve Agents. Toxicol Sci 2019; 174:124-132. [DOI: 10.1093/toxsci/kfz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a “bioscavenger” that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Collapse
Affiliation(s)
| | | | | | - Erin E Lemmon
- Battelle Memorial Institute, Columbus, OH 43201, Ohio
| | | | | | | |
Collapse
|
7
|
Characterization of butyrylcholinesterase from porcine milk. Arch Biochem Biophys 2018; 652:38-49. [PMID: 29908755 DOI: 10.1016/j.abb.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Human butyrylcholinesterase (HuBChE) is under development for use as a pretreatment antidote against nerve agent toxicity. Animals are used to evaluate the efficacy of HuBChE for protection against organophosphorus nerve agents. Pharmacokinetic studies of HuBChE in minipigs showed a mean residence time of 267 h, similar to the half-life of HuBChE in humans, suggesting a high degree of similarity between BChE from 2 sources. Our aim was to compare the biochemical properties of PoBChE purified from porcine milk to HuBChE purified from human plasma. PoBChE hydrolyzed acetylthiocholine slightly faster than butyrylthiocholine, but was sensitive to BChE-specific inhibitors. PoBChE was 50-fold less sensitive to inhibition by DFP than HuBChE and 5-fold slower to reactivate in the presence of 2-PAM. The amino acid sequence of PoBChE determined by liquid chromatography tandem mass spectrometry was 91% identical to HuBChE. Monoclonal antibodies 11D8, mAb2, and 3E8 (HAH 002) recognized both PoBChE and HuBChE. Assembly of 4 identical subunits into tetramers occurred by noncovalent interaction with polyproline-rich peptides in PoBChE as well as in HuBChE, though the set of polyproline-rich peptides in milk-derived PoBChE was different from the set in plasma-derived HuBChE tetramers. It was concluded that the esterase isolated from porcine milk is PoBChE.
Collapse
|
8
|
Jansson D, Lindström SW, Norlin R, Hok S, Valdez CA, Williams AM, Alcaraz A, Nilsson C, Åstot C. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta 2018; 186:597-606. [PMID: 29784408 DOI: 10.1016/j.talanta.2018.02.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 11/25/2022]
Abstract
This work is part two of a three-part series in this issue of a Sweden-United States collaborative effort towards the understanding of the chemical attribution signatures of Russian VX (VR) in synthesized samples and complex food matrices. In this study, we describe the sourcing of VR present in food based on chemical analysis of attribution signatures by liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate data analysis. Analytical data was acquired from seven different foods spiked with VR batches that were synthesized via six different routes in two separate laboratories. The synthesis products were spiked at a lethal dose into seven food matrices: water, orange juice, apple purée, baby food, pea purée, liquid eggs and hot dog. After acetonitrile sample extraction, the samples were analyzed by LC-MS/MS operated in MRM mode. A multivariate statistical calibration model was built on the chemical attribution profiles from 118 VR spiked food samples. Using the model, an external test-set of the six synthesis routes employed for VR production was correctly identified with no observable major impact of the food matrices to the classification. The overall performance of the statistical models was found to be exceptional (94%) for the test set samples retrospectively classified to their synthesis routes.
Collapse
Affiliation(s)
- Daniel Jansson
- Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden.
| | | | - Rikard Norlin
- Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Saphon Hok
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave. L-091, Livermore, CA 94550, United States
| | - Carlos A Valdez
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave. L-091, Livermore, CA 94550, United States
| | - Audrey M Williams
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave. L-091, Livermore, CA 94550, United States
| | - Armando Alcaraz
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave. L-091, Livermore, CA 94550, United States
| | - Calle Nilsson
- Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- Swedish Defence Research Agency, FOI CBRN Defence and Security, SE-901 82 Umeå, Sweden
| |
Collapse
|