1
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
2
|
Karimi MA, Goudarzi M, Khodayar MJ, Khorsandi L, Mehrzadi S, Fatemi I. Gemfibrozil palliates adriamycin-induced testicular injury in male rats via modulating oxidative, endocrine and inflammatory changes in rats. Tissue Cell 2023. [PMID: 36863109 DOI: 10.1016/j.tice.2023.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Adriamycin (ADR), an antineoplastic drug, is widely used to treat different types of cancers. Yet, the usage is limited because of its severe side effects on testis. On the other hand, gemfibrozil (GEM), as an anti-hyperlipidemic drug, has other pharmacological effects independent of lipid- lowering activity including anti-inflammatory and antioxidant properties. The present experiment was designed to investigate the effect of GEM on ADR-induced testicular injury in male rats. A total of 28 male Wistar rats were divided into 4 equal groups: Control; ADR; ADR + GEM; GEM. Serum level of testosterone, luteinizing hormone and follicle stimulating hormone were assessed. Also, testicular tissue oxidant/antioxidant markers (malondialdehyde, total antioxidant capacity, nitric oxide, superoxide dismutase, catalase, glutathione peroxidase and glutathione) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) were measured. Histopathological studies were conducted on testes. GEM improved hormonal profile and antioxidant defenses in comparison with ADR-treated animals. GEM, significantly reduced the production of proinflammatory cytokines compared with ADR-treated animals. Hormonal and biochemical results were further supported by testicular histopathological findings. Thus, GEM might represent a promising therapeutic modality for the attenuation of testicular injury induced by ADR in clinic.
Collapse
Affiliation(s)
- Mohammad Ali Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Pharmacy school, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran.
| |
Collapse
|
3
|
Asadi M, Rahmani M, Samadi A, Kalantari Hesari A. Acetylsalicylic acid-induced alterations in male reproductive parameters in Wistar rats and the effect of sprint interval training. Andrologia 2022; 54:e14339. [PMID: 34862636 DOI: 10.1111/and.14339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effect of a 5-week ASA treatment on male reproductive parameters in Wistar rats; moreover, the potential benefits of a 4-week sprint interval training (SIT) on these measures following ASA treatment were investigated. A total of 25 male rats were obtained and randomly assigned to the control group (C, n = 10) and the ASA treatment group (EP, n = 15). After 5 weeks, five rats from each group were killed and the effect of ASA treatment on the reproductive parameters was assessed. Then, the ASA treatment terminated and the remaining 10 ASA-treated rats were divided into the non-treatment group (NT, n = 5) and the exercise training group (ET, n = 5), which performed SIT 3 sessions/week for 4 weeks. Five weeks of ASA treatment resulted in a statistically significant decrease in serum testosterone level, Leydig cell number, sperm count, sperm motility, sperm viability, TDI, SI and RI, and it resulted in a significant increase in sperm nucleus maturity and sperm DNA fragmentation (p ˂ 0.05). Furthermore, 4 weeks of SIT reversed all the ASA-induced changes in male reproductive parameters (p < 0.05), but not the number of seminiferous tubules and the sperm motility (p > 0.05). A subchronic dose of ASA could lead to adverse alterations in male reproductive parameters and SIT is beneficial in reversing those alterations.
Collapse
Affiliation(s)
- Mehdi Asadi
- Department of Physical Education and Sport Sciences, Shahed University, Tehran, Iran
| | - Mohammad Rahmani
- Department of Physical Education and Sport Sciences, Shahed University, Tehran, Iran
| | - Ali Samadi
- Department of Physical Education and Sport Sciences, Shahed University, Tehran, Iran
| | - Ali Kalantari Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan, Iran
| |
Collapse
|
4
|
Davoodi M, Zilaei Bouri S, Dehghan Ghahfarokhi S. Antioxidant Effects of Aerobic Training and Crocin Consumption on Doxorubicin-Induced Testicular Toxicity in Rats. J Family Reprod Health 2021; 15:28-37. [PMID: 34429734 PMCID: PMC8346744 DOI: 10.18502/jfrh.v15i1.6075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: Doxorubicin (DOX) treatment has been reported to increase the risk of serious toxicity in testis, therefore the aim of the present study was to investigate the antioxidant effects of training and Crocin on doxorubicin-induced testicular toxicity in rats. Materials and methods:⊆max) 5 day/w. Also, groups 2 to 7 administered 2 mg/kg/w DOX intraperitoneal. The testes were removed and glutathione peroxidase (GPX), total antioxidant capacity (TAC) and protein carbonyl (PC) were analyzed using ELISA methods, one-way analysis of variance along with Bonferroni’s post hoc test were used for analysis in SPSS (P≤0.05). Results: The results of the present study showed that doxorubicin induced oxidative stress in testicular tissue by decreasing the level of GPX and TAC and increasing PC level (P≤0.05); TAC and GPX improved in all groups except groups 2 and 5, respectively, and their increase in the group 7 was significantly higher compared to other groups (P≤0.05). Increased PC levels were significantly reduced in the groups 5, 6 and 7. Conclusion: The increase in antioxidant levels in the concurrent Crocin and training group seems to be dose-dependent, but the oxidative stress in both Crocin and training groups of 10 and 50 mg/kg/d is associated with a decrease, but its modulation in the Crocin consumption group alone depends on the dose.
Collapse
Affiliation(s)
- Mohsen Davoodi
- Department of Physical Education & Sport Sciences, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Shirin Zilaei Bouri
- Department of Physical Education & Sport Sciences, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran
| | | |
Collapse
|
5
|
Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed Pharmacother 2021; 142:112040. [PMID: 34416630 DOI: 10.1016/j.biopha.2021.112040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.
Collapse
|
6
|
Matos B, Patrício D, Henriques MC, Freitas MJ, Vitorino R, Duarte IF, Howl J, Oliveira PA, Seixas F, Duarte JA, Ferreira R, Fardilha M. Chronic exercise training attenuates prostate cancer-induced molecular remodelling in the testis. Cell Oncol (Dordr) 2021; 44:311-327. [PMID: 33074478 DOI: 10.1007/s13402-020-00567-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Prostate cancer is a major cause of cancer-related death in males worldwide and, in addition to impairing prostate function, also causes testicular adaptations. In this study, we aim to investigate the preventive effect of exercise training on PCa-induced testicular dysfunction. METHODS As a model, we used fifty Wistar Unilever male rats, randomly divided in four experimental groups. Prostate cancer was chemically and hormonally induced in two groups of animals (PCa groups). One control group and one PCa group was submitted to moderate intensity treadmill exercise training. Fifty weeks after the start of the training the animals were sacrificed and sperm, prostate, testis and serum were collected and analyzed. Sperm concentration and morphology, and testosterone serum levels were determined. In addition, histological analyses of the testes were performed, and testis proteomes and metabolomes were characterized. RESULTS We found that prostate cancer negatively affected testicular function, manifested as an arrest of spermatogenesis. Oxidative stress-induced DNA damage, arising from reduced testis blood flow, may also contribute to apoptosis of germ cells and consequential spermatogenic impairment. Decreased utilization of the glycolytic pathway, increased metabolism of ketone bodies and the accumulation of branched chain amino acids were also evident in the PCa animals. Conversely, we found that the treadmill training regimen activated DNA repair mechanisms and counteracted several metabolic alterations caused by PCa without impact on oxidative stress. CONCLUSIONS These findings confirm a negative impact of prostate cancer on testis function and suggest a beneficial role for exercise training in the prevention of prostate cancer-induced testis dysfunction.
Collapse
Affiliation(s)
- Bárbara Matos
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Patrício
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Magda C Henriques
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria J Freitas
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José A Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine - iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Investigation of the Effects of Artemisinin on Testis and Kidney Injury Induced by Doxorubicin. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Artemisinin, an antimalarial drug, has anticancer activity and possesses protective effects against several tissue injuries. The aim of the present study was to investigate the effects of artemisinin on doxorubicin-induced renal and testicular toxicity in rats. Doxorubicin was administered to rats at a single dose of 10 mg/kg body weight (b.w.) as a single intraperitoneal injection. Application of artemisinin was by using oral gavage feeding needle for 14 days at different specified doses (7 mg/kg and 35 mg/kg b.w.). At the end of the experiments, kidney and testis samples were collected and used for histopathological and immunohistochemical examinations. At histopathological examination, while hyperemia was the marked finding in kidney and testis of rats treated with doxorubicin only, no evidence of structural abnormalities showed in other groups. Immunohistochemical examination of the testes and kidneys demonstrated significantly increased expression of caspase-3, TNF-α, iNOS and NF-κB in rats treated with doxorubicin only. Artemisinin decreased the doxorubicin-induced overexpression of NF-κB, iNOS, TNFα and caspase-3 in these tissues of rats. Artemisinin can protect the kidney and testis against doxorubicin-induced nephrotoxicity and testotoxicity, probably through a decrease of caspase-3, TNF-α, iNOS and NF-κB expressions. It may be concluded that artemisinin has a potential for clinical use in the treatment of kidney and testis damage induced by doxorubicin. Further researches are required to determine the appropriate combination of artemisinin with doxorubicin.
Collapse
|
8
|
Wu T, Li H, Lan Q, Zhao Z, Cao Y, Zhou P, Wan S, Zhang J, Jiang H, Zhang Q, Pang J. Protective effects of
S
‐carvedilol on doxorubicin‐induced damages to human umbilical vein endothelial cells and rats. J Appl Toxicol 2019; 39:1233-1244. [DOI: 10.1002/jat.3809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Haixin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Qunsheng Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Ze‐an Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Hong Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Qun Zhang
- GCP Development, The Third Affiliated HospitalSouthern Medical University Guangzhou China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| |
Collapse
|
9
|
Olayinka ET, Ore A, Adeyemo OA, Ola OS. The role of flavonoid antioxidant, morin in improving procarbazine-induced oxidative stress on testicular function in rat. Porto Biomed J 2019; 4:e28. [PMID: 31595255 PMCID: PMC6750247 DOI: 10.1016/j.pbj.0000000000000028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Procarbazine (PCZ) is an effective chemotherapeutic drug used in the treatment of lymphoma; however, oxidative stress-mediated testicular toxicity is a major side effect. Recently, therapeutic intervention using flavonoids against oxidative stress-related pathologies is gaining more attention. Morin (MOR) is a natural flavonoid with proven antioxidant activity. This study was designed therefore to evaluate the potential role of MOR in ameliorating PCZ-induced testicular oxidative stress and altered sperm quality in rat model. METHODS A total of 24 male Wistar rats (170-180 g) were randomly assigned into 4 treatment groups: I, control; II, PCZ (2 mg/kg b.w.); III, PCZ (2 mg/kg b.w.) + MOR (100 mg/kg b.w.) simultaneously administered and IV, MOR (100 mg/kg b.w.), and all treatments lasted 14 days. RESULTS PCZ treatment displayed significant reduction in sperm number, sperm motility, percentage normal sperm cells, and daily sperm production rate. Meanwhile the activities of testicular enzymes: gamma-glutamyl transferase, acid phosphatase, and lactate dehydrogenase were significantly altered in the PCZ group compared to control. Furthermore, PCZ caused a significant reduction in levels of glutathione and ascorbic acid as well as activities superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase in the testes of PCZ-treated rats. A significant increase in testicular malondialdehyde level was also observed in the PCZ group. MOR treatment, however, significantly restored the altered sperm parameters and biochemical markers in the testis. CONCLUSIONS Our data suggest that MOR administration protected against PCZ-induced testicular and spermatotoxicity in rat, by improving testicular antioxidant system.
Collapse
Affiliation(s)
- Ebenezer Tunde Olayinka
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ayokanmi Ore
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Oluwatobi Adewumi Adeyemo
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olaniyi Solomon Ola
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
10
|
Matos B, Howl J, Ferreira R, Fardilha M. Exploring the effect of exercise training on testicular function. Eur J Appl Physiol 2018; 119:1-8. [DOI: 10.1007/s00421-018-3989-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
|
11
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|