1
|
Zhang X, Zhang W, Zhao L, Ma G, Huang Y, Geng Z, Jiang Q, Wen X, Lin Y, Meng Q, Zhang Z, Bi Y. Ocotillol Derivatives Mitigate Retinal Ischemia-Reperfusion Injury by Regulating the Keap1/Nrf2/ARE Signaling Pathway. J Med Chem 2024; 67:15268-15290. [PMID: 39145589 DOI: 10.1021/acs.jmedchem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Retinal ischemia-reperfusion (RIR) injury can lead to various retinal diseases. Oxidative stress is considered an important pathological event in RIR injury. Here, we designed and synthesized 34 ocotillol derivatives, then examined their antioxidant and anti-inflammatory capacities; we found that compounds 7 (C24-R) and 8 (C24-S) were most active. To enhance their water solubility, sustained release, and biocompatibility, compounds 7 and 8 were encapsulated into liposomes for in vivo activity and mechanistic studies. In vivo studies indicated that compounds 7 and 8 protected normal retinal structure and physiological function after RIR injury, reversed damage to retinal ganglion cells, and the S-configuration exhibited significantly stronger activity compared with the R-configuration. Mechanistic studies showed that compound 8 exerted a therapeutic effect on RIR injury by activating the Keap1/Nrf2/ARE signaling pathway; compound 7 did not influence this pathway. We also demonstrated that differential isomerization at the C-24 position influenced protection against RIR injury.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Wen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Gongshan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Qian Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaomei Wen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yuqi Lin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| |
Collapse
|
2
|
Qian JF, Liang SQ, Wang QY, Xu JC, Luo W, Huang WJ, Wu GJ, Liang G. Isoproterenol induces MD2 activation by β-AR-cAMP-PKA-ROS signalling axis in cardiomyocytes and macrophages drives inflammatory heart failure. Acta Pharmacol Sin 2024; 45:531-544. [PMID: 37919475 PMCID: PMC10834947 DOI: 10.1038/s41401-023-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating β-adrenergic receptors (β-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-β-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 μM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via β1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via β2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.
Collapse
Affiliation(s)
- Jin-Fu Qian
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Qi Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qin-Yan Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|
5
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
8
|
Hu X, Ding C, Ding X, Fan P, Zheng J, Xiang H, Li X, Qiao Y, Xue W, Li Y. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway. Life Sci 2020; 256:117864. [PMID: 32474021 DOI: 10.1016/j.lfs.2020.117864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
As a major risk factor of acute kidney injury, renal ischemia/reperfusion (I/R) has a high mortality rate. Myeloid differentiation protein 2 (MD-2) is a secretory glycoprotein that plays an important role in inflammation. Our study aimed to explore the roles of MD-2 in I/R-induced inflammation and oxidative stress in vivo and in vitro. For the in vivo studies, male C57BL/6 mice were randomly divided into four groups: 1) sham, 2) I/R, 3) negative control for siRNA (siNC) and I/R treatment, or 4) MD-2 siRNA (siMD-2) and I/R. Levels of blood urea nitrogen and creatinine in the plasma were tested, and hematoxylin and eosin staining was performed at 24 h after I/R injury. The inflammatory cytokines TNF-α, IL-6, and MCP-1 were measured using ELISA and Real-time qPCR (RT-qPCR). Malondialdehyde (MDA) content and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity were estimated. For the in vitro studies, HK-2 cells were transfected with siMD-2 and then exposed to hypoxia/reoxygenation (H/R). Inflammatory cytokine expression and oxidative stress then were evaluated. We found decreased levels of blood urea nitrogen and creatinine levels after MD-2 silencing. MD-2 deficiency improved histological damage. MD-2 downregulation attenuated levels of inflammatory cytokines. Inhibition of MD-2 resulted in reduced MDA content and increased SOD, CAT, and GPx activity. Loss of function of MD-2 inhibited the H/R-induced production and expression of inflammatory cytokines. MD-2 silencing reduced MDA content after H/R, and MD-2 suppression enhanced SOD, CAT, and GPx activity. MD-2 deficiency also blocked H/R-mediated activation of the TLR4/TRAF6/NF-κB pathway, and pyrrolidinedithiocarbamate (PDTC) pretreatment strengthened the anti-inflammatory and antioxidant damage effects of MD-2 silencing. Taken together, our study revealed that MD-2 deficiency ameliorated renal I/R-induced inflammation and oxidative stress via inhibition of TLR4/TRAF6/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaojun Hu
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenguang Ding
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Heli Xiang
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao Li
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuxi Qiao
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wujun Xue
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yang Li
- Department of Renal Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
9
|
Tan X, Tao Q, Li G, Xiang L, Zheng X, Zhang T, Wu C, Li D. Fibroblast Growth Factor 2 Attenuates Renal Ischemia-Reperfusion Injury via Inhibition of Endoplasmic Reticulum Stress. Front Cell Dev Biol 2020; 8:147. [PMID: 32266254 PMCID: PMC7105877 DOI: 10.3389/fcell.2020.00147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious clinical disease that is mainly caused by renal ischemia-reperfusion (I/R) injury, sepsis, and nephrotoxic drugs. The pathologic mechanism of AKI is very complex and may involve oxidative stress, inflammatory response, autophagy, apoptosis, and endoplasmic reticulum (ER) stress. The basic fibroblast growth factor (FGF2) is a canonic member of the FGF family that plays a crucial role in various cellular processes, including organ development, wound healing, and tissue regeneration. However, few studies have reported the potential therapeutic effect of FGF2 in the repair of renal ischemic injury in the past two decades. In the present study, we investigated the protective effect of FGF2 on renal I/R injury using Sprague-Dawley and NRK-52E cells. Our results showed that FGF2 significantly attenuates the apoptosis of kidney tissues after I/R injury through the inhibition of excessive ER stress. Moreover, FGF2 also alleviated the excessive ER stress and apoptosis in cultured NRK-52E cells injured by tert-Butyl hydroperoxide (TBHP). Significantly, phosphatidylinositol 3-kinase (PI3K)-selective inhibitor LY294002 and mitogen-activated protein kinase kinase (MEK)-selective inhibitor U0126 were utilized in the present study to examine the protective mechanism of FGF2. Our in vitro experimental results confirmed that both LY294002 and U0126 largely abolished the protective effect of FGF2. Taken together, the findings of the present study indicated that FGF2 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress via the activation of the PI3K/AKT and MEK-ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Guixiu Li
- Outpatient Operating Room, Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaomeng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Tianzhen Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuijiao Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Wang Y, Wang D, Jin Z. miR‑27a suppresses TLR4‑induced renal ischemia‑reperfusion injury. Mol Med Rep 2019; 20:967-976. [PMID: 31173204 PMCID: PMC6625210 DOI: 10.3892/mmr.2019.10333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the primary causes of acute renal injury and even acute renal failure. An increasing body of evidence has indicated that the aberrant expression of microRNAs (miRNA/miR) is closely associated with the progression of IRI. In the process of renal IRI, inflammatory reactions, cell adhesion and the death of renal tubular epithelial cells serve important roles. The present study investigated the expression of renal miRNAs following renal IRI in an attempt to identify the miRNAs that exert pivotal functions in renal IRI. The present study revealed that miR-27a, which was downregulated in IRI, and the 3′-untranslated region (UTR) of Toll-like receptor 4 (TLR4) have associated binding sites. The levels of TLR4, miR-27a and specific associated proteins in the renal tissues of gestational rats were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, immunohistochemistry and western blotting. The associations between miR-27a and TLR4 were analyzed, and the regulatory effect of miR-27a on TLR4 was detected via a luciferase reporter gene assay, western blotting and RT-qPCR in vivo and in vitro. In addition, the present study demonstrated that miR-27a suppressed the expression of TLR4 by binding to the 3′UTR of TLR4. The overexpression of miR-27a downregulated the expression of TLR4, which in turn inhibited the inflammation, cell adhesion and cell death in IRI. Therefore, miR-27a inhibited inflammation in IRI by decreasing the expression of TLR4.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Jin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
11
|
Sun J, Mu H, Yu J, Li L, Yan H, Li G, Tan H, Yang N, Yang X, Yi L. Diallyl disulfide down-regulates calreticulin and promotes C/EBPα expression in differentiation of human leukaemia cells. J Cell Mol Med 2018; 23:194-204. [PMID: 30394654 PMCID: PMC6307788 DOI: 10.1111/jcmm.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL-60 cell differentiation involves down-regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS-induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein-α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL-60 cells resulted in down-regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL-60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS-mediated down-regulation of CRT and up-regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG-rich element in the 3' untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS-induced leukaemic cell differentiation.
Collapse
Affiliation(s)
- Jing Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hongxiang Mu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Jia Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hongxia Yan
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Guoqing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hui Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Nanyang Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Lan Yi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|