1
|
Didik S, Palygin O, Chandy M, Staruschenko A. The effects of cannabinoids on the kidney. Acta Physiol (Oxf) 2024; 240:e14247. [PMID: 39445706 DOI: 10.1111/apha.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Cannabinoids are a class of drugs derived from the Cannabis plant that are widely used for the treatment of various medical conditions and recreational use. Common examples include Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), spice, and 2-arachidonoylglycerol (2-AG). With more than 100 cannabinoids identified, their influence on the nervous system, role in pain management, and effects due to illicit use have been extensively studied. However, their effects on peripheral organs, such as the kidneys, require further examination. With dramatic rises in use, production, and legalization, it is essential to understand the impact and mechanistic properties of these drugs as they pertain to renal and cardiovascular physiology. The goal of this review is to summarize prior literature on the expression of cannabinoid receptors and how cannabinoids influence renal function. This review first discusses the interaction of the endocannabinoid system (ECS) and renal physiology and pathophysiology. Following, we briefly discuss the role of the ECS in various kidney diseases and the potential therapeutic applications of drugs targeting the cannabinoid system. Lastly, recent studies have identified several detrimental effects of cannabinoids, not only on the kidney but also in contributing to adverse cardiovascular outcomes. Thus, the negative impact of cannabinoids on renal function and the development of various cardiovascular diseases is also discussed.
Collapse
Affiliation(s)
- Steven Didik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans Hospital, Tampa, Florida, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark Chandy
- Department of Medicine, Western University, London, Ontario, Canada
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans Hospital, Tampa, Florida, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Alzu'bi A, Abu-El-Rub E, Al-Trad B, Alzoubi H, Abu-El-Rub H, Albals D, Abdelhady GT, Bader NS, Almazari R, Al-Zoubi RM. In vivo assessment of the nephrotoxic effects of the synthetic cannabinoid AB-FUBINACA. Forensic Toxicol 2024:10.1007/s11419-024-00699-9. [PMID: 39120650 DOI: 10.1007/s11419-024-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The widespread misuse of synthetic cannabinoids (SCs) has led to a notable increase in reported adverse effects, raising significant health concerns. SCs use has been particularly associated with acute kidney injury (AKI). However, the pathogenesis of SCs-induced AKI is not well-understood. METHODS We investigated the nephrotoxic effect of acute administration of N-[(1S)- 1-(aminocarbonyl)-2-methylpropyl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide (AB-FUBINKA) (3 mg/kg for 5 days) in mice. Various parameters of oxidative stress, inflammation, and apoptosis have been quantified. The expressions of mitochondrial complexes (I-V) in renal tissues were also assessed. RESULTS Our findings showed that AB-FUBINACA induced substantial impairment in the renal function that is accompanied by elevated expression of renal tubular damage markers; KIM-1 and NGAL. Administration of AB-FUBINACA was found to be associated with a significant increase in the expression of oxidative stress markers (iNOS, NOX4, NOX2, NOS3) and the level of lipid peroxidation in the kidney. The expression of pro-inflammatory markers (IL-6, TNF-alpha, NF-kB) was also enhanced following exposure to AB-FUBINACA. These findings were also correlated with increased expression of major apoptosis regulatory markers (Bax, caspase-9, caspase-3) and reduced expression of mitochondrial complexes I, III, and IV. CONCLUSION These results indicate that AB-FUBINACA can trigger oxidative stress and inflammation, and activate caspase-dependent apoptosis in the kidney, with these processes being possibly linked to disruption of mitochondrial complexes and could be an underlying mechanism of SCs-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan.
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Hadeel Abu-El-Rub
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Dima Albals
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, 211-63, Jordan
| | - Gamal T Abdelhady
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Noor S Bader
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, 3050, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, 2713, Doha, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
3
|
Alzu'bi A, Almahasneh F, Khasawneh R, Abu-El-Rub E, Baker WB, Al-Zoubi RM. The synthetic cannabinoids menace: a review of health risks and toxicity. Eur J Med Res 2024; 29:49. [PMID: 38216984 PMCID: PMC10785485 DOI: 10.1186/s40001-023-01443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 01/14/2024] Open
Abstract
Synthetic cannabinoids (SCs) are chemically classified as psychoactive substances that target the endocannabinoid system in many body organs. SCs can initiate pathophysiological changes in many tissues which can be severe enough to damage the normal functionality of our body systems. The majority of SCs-related side effects are mediated by activating Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R). The activation of these receptors can enkindle many downstream signalling pathways, including oxidative stress, inflammation, and apoptosis that ultimately can produce deleterious changes in many organs. Besides activating the cannabinoid receptors, SCs can act on non-cannabinoid targets, such as the orphan G protein receptors GPR55 and GPR18, the Peroxisome Proliferator-activated Receptors (PPARs), and the Transient receptor potential vanilloid 1 (TRPV1), which are broadly expressed in the brain and the heart and their activation mediates many pharmacological effects of SCs. In this review, we shed light on the multisystem complications found in SCs abusers, particularly discussing their neurologic, cardiovascular, renal, and hepatic effects, as well as highlighting the mechanisms that intermediate SCs-related pharmacological and toxicological consequences to provide comprehensive understanding of their short and long-term systemic effects.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan.
| | - Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ramada Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Worood Bani Baker
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation & Men'S Health, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
4
|
Naser Al-Eitan L, Zuhair Alahmad S. The Expression Analyses of GSK3B, VEGF, ANG1, and ANG2 in Human Brain Microvascular Endothelial Cells Treated with the Synthetic Cannabinoid XLR-11. Gene 2023:147585. [PMID: 37355149 DOI: 10.1016/j.gene.2023.147585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
The endocannabinoid system receptors, cannabinoid receptors type-1 (CBR-1) and -2 (CBR-2), are implicated in several behavioral and cognitive processes. Many studies have indicated a correlation between cannabinoid receptors and angiogenesis. The current study aims to reveal the possible molecular signaling involved in brain angiogenesis induced by the activation of CBR-1 and CBR-2. We investigated whether the synthetic cannabinoid XLR-11, an agonist of CBR-1 and CBR-2, influences the mRNA and protein expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG1) and -2 (ANG2) in human brain microvascular endothelial cells (hBMVEs). Furthermore, we determined the phosphorylation of glycogen synthase kinase 3 beta (GSK3B) expression. Treatment of hBMVEs cells with XLR-11 elevated the mRNA levels of VEGF, ANG1, and ANG2. The secretion of these proangiogenic factors was increased in the media. Furthermore, the intracellular expression of VEGF, ANG1, ANG2, and GSK3B was significantly increased. This current research provides a new possible approach by targeting the cannabinoid receptors to control and regulate brain angiogenesis for treating a variety of angiogenesis-related diseases. This could be achived by using different agonists or antagonists of the cannabinoid receptors based on the nature of the diseases.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
5
|
Semi-Preparative Separation, Absolute Configuration, Stereochemical Stability and Effects on Human Neuronal Cells of MDPV Enantiomers. Molecules 2023; 28:molecules28052121. [PMID: 36903367 PMCID: PMC10003790 DOI: 10.3390/molecules28052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Synthetic cathinones, such as 3,4-methylenedioxypyrovalerone (MDPV), are widely abused due to their psychostimulant effects. As they are chiral molecules, studies of their stereochemical stability (racemization can occur in certain temperatures and acidic/basic environments) and of their biological and/or toxicity effects (enantiomers might display different properties) are of great relevance. In this study, the liquid chromatography (LC) semi-preparative enantioresolution of MDPV was optimized to collect both enantiomers with high recovery rates and enantiomeric ratio (e.r.) values. The absolute configuration of the MDPV enantiomers was determined by electronic circular dichroism (ECD) with the aid of theoretical calculations. The first eluted enantiomer was identified as S-(-)-MDPV and the second eluted enantiomer was identified as R-(+)-MDPV. A racemization study was performed by LC-UV, showing enantiomers' stability up to 48 h at room temperature and 24 h at 37 °C. Racemization was only affected by higher temperatures. The potential enantioselectivity of MDPV in cytotoxicity and in the expression of neuroplasticity-involved proteins-brain-derived neurotrophic factor (BDNF) and cyclin-dependent kinase 5 (Cdk5)-was also evaluated using SH-SY5Y neuroblastoma cells. No enantioselectivity was observed.
Collapse
|
6
|
Almeida AS, Silva B, Remião F, Fernandes C. Assessment of the Permeability of 3,4-Methylenedioxypyrovalerone (MDPV) across the Caco-2 Monolayer for Estimation of Intestinal Absorption and Enantioselectivity. Int J Mol Sci 2023; 24:ijms24032680. [PMID: 36768999 PMCID: PMC9917214 DOI: 10.3390/ijms24032680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a widely studied synthetic cathinone heterocycle mainly concerning its psychoactive effects. It is a chiral molecule and one of the most abused new psychoactive substances worldwide. Enantioselectivity studies for MDPV are still scarce and the extent to which it crosses the intestinal membrane is still unknown. Herein, an in vitro permeability study was performed to evaluate the passage of the enantiomers of MDPV across the Caco-2 monolayer. To detect and quantify MDPV, a UHPLC-UV method was developed and validated. Acceptable values within the recommended limits were obtained for all evaluated parameters (specificity, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ) and precision). The enantiomers of MDPV were found to be highly permeable across the Caco-2 monolayer, which can indicate a high intestinal permeability. Enantioselectivity was observed for the Papp values in the basolateral (BL) to apical (AP) direction. Furthermore, efflux ratios are indicative of efflux through a facilitated diffusion mechanism. To the best of our knowledge, determination of the permeability of MDPV across the intestinal epithelial cell monolayer is presented here for the first time.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Bárbara Silva
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Correspondence: (F.R.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (F.R.); (C.F.)
| |
Collapse
|
7
|
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol 2023; 63:187-209. [PMID: 35914767 DOI: 10.1146/annurev-pharmtox-031122-113758] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Collapse
Affiliation(s)
- Rita Roque-Bravo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rafaela Sofia Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rui F Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; , .,Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, IUCS-CESPU, Gandra, Portugal
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| |
Collapse
|
8
|
Akar M, Ercin M, Boran T, Gezginci-Oktayoglu S, Özhan G. UR-144, synthetic cannabinoid receptor agonist, induced cardiomyoblast toxicity mechanism comprises cytoplasmic Ca 2+ and DAPK1 related autophagy and necrosis. Toxicol Mech Methods 2023; 33:56-64. [PMID: 35606921 DOI: 10.1080/15376516.2022.2081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UR-144, a cannabinoid receptor agonist, is widely used alone or in combination with other synthetic cannabinoids (SCs) all over the world. At overdose, cardiovascular symptoms have been reported and the underlying molecular mechanisms of these adverse effects are not known. It is highly important to clarify the toxic effects of UR-144 for the treatment of poisoning. In the present study, the molecular mechanism of cytotoxic effects of UR-144 is evaluated on a cardiomyoblastic cell line using WST-1 and LDH assays. Apoptosis/necrosis, autophagy, and ROS (reactive oxygen species) levels were determined using flow cytometry. Cytoplasmic Ca2+ levels were measured by using a fluorogenic calcium-binding dye. Released and cytoplasmic troponin T levels, a specific marker of cardiotoxicity, were examined with western blot. For the evaluation of the role of DAPK1, on UR-144-induced cell death, DAPK1 activity and DAPK1 protein level were investigated. Its cytotoxic effects increased in a dose-dependent manner for WST-1 and LDH assays, while membrane damage, one of the signs of necrotic cell death, was more remarkable than damage to mitochondria. Cytoplasmic Ca2+ levels rose after high-dose UR-144 treatment and inhibition of DAPK1 activity ameliorated UR-144-induced cytotoxicity. Released troponin T significantly increased at a dose of 200 µM. ROS and total antioxidant capacity of cells were both reduced following high dose UR-144 treatment. The results indicated that UR-144-induced autophagic and necrotic cell death might be a consequence of elevated cytoplasmic Ca2+ levels and DAPK1 activation. However, in vivo/clinical studies are needed to identify molecular mechanisms of cardiotoxic effects of UR-144.
Collapse
Affiliation(s)
- Muzeyyen Akar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Merve Ercin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Tugce Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | | | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Drugs of abuse and kidney toxicity. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Alzu’bi A, Zoubi MSA, Al-Trad B, AbuAlArjah MI, Shehab M, Alzoubi H, Albals D, Abdelhady GT, El-Huneidi W. Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model. TOXICS 2022; 10:668. [PMID: 36355959 PMCID: PMC9692363 DOI: 10.3390/toxics10110668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The widespread recreational use of synthetic cannabinoids (SCs) has become a serious health issue. Reports of life-threatening intoxications related to SC consumption have markedly increased in recent years, including neurotoxicity, cardiotoxicity, nephrotoxicity, and hepatotoxicity. We investigated the impact of acute administration of the synthetic cannabinoid XLR-11 (3 mg/kg, i.p. for 5 consecutive days) on the liver in BALB/c mouse animal model. Using real-time quantitative RT-PCR, MDA assay, and TUNEL assay, we found consistent up-regulation of a variety of genes involved in oxidative stress (NOX2, NOX4, and iNOS), inflammation (TNF-α, IL-1β, IL-6), and apoptosis (Bax) in the liver of XLR-11 treated mice compared to control mice. These finding were supported with an elevation of MDA levels and TUNEL positive cells in the liver of XLR-11 treated mice which further confirm increased oxidative stress and apoptosis, respectively. Histopathological analysis of the liver of XLR-11 treated mice confirmed pronounced hepatic necrosis associated with inflammatory cell infiltration. Furthermore, elevated ALT and AST serum levels were also identified in XLR-11 treated mice indicating possible liver damage. Overall, SC-induced hepatotoxicity seems to be mainly mediated by activated oxidative stress and inflammatory processes in the liver, but the specific mechanisms involved require further investigations. However, the present study shed light on the potential deleterious role of acute administration of SCs in the progression to acute hepatic injury which enhances our understanding of the adverse effect of SC consumption.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Manal Isam AbuAlArjah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Malek Shehab
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Dima Albals
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan
| | - Gamal T. Abdelhady
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Garcia J, Carvalho A, das Neves RP, Malheiro R, Rodrigues DF, Figueiredo PR, Bovolini A, Duarte JA, Costa VM, Carvalho F. Antidotal effect of cyclosporine A against α-amanitin toxicity in CD-1 mice, at clinical relevant doses. Food Chem Toxicol 2022; 166:113198. [PMID: 35671903 DOI: 10.1016/j.fct.2022.113198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Amanita phalloides is one of the most toxic mushrooms worldwide, being responsible for the majority of human fatal cases of mushroom intoxications. α-Amanitin, the most deleterious toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and renal failure. Herein, we used cyclosporine A after it showed potential to displace RNAP II α-amanitin in silico. That potential was not confirmed either by the incorporation of ethynyl-UTP or by the monitoring of fluorescent RNAP II levels. Nevertheless, concomitant incubation of cyclosporine A with α-amanitin, for a short period, provided significant protection against its toxicity in differentiated HepaRG cells. In mice, the concomitant administration of α-amanitin [0.45 mg/kg intraperitoneal (i.p.)] with cyclosporine A (10 mg/kg i.p. plus 2 × 10 mg/kg cyclosporine A i.p. at 8 and 12 h post α-amanitin) resulted in the full survival of α-amanitin-intoxicated mice, up to 30 days after the toxin's administration. Since α-amanitin is a substrate of the organic-anion-transporting polypeptide 1B3 and cyclosporine A inhibits this transporter and is a potent anti-inflammatory agent, we hypothesize that these mechanisms are responsible for the protection observed. These results indicate a potential antidotal effect of cyclosporine A, and its safety profile advocates for its use at an early stage of α-amanitin intoxications.
Collapse
Affiliation(s)
- Juliana Garcia
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Alexandra Carvalho
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo Pires das Neves
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Rui Malheiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Daniela F Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Pedro R Figueiredo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | - José Alberto Duarte
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
12
|
Kevin RC, Cairns EA, Boyd R, Arnold JC, Bowen MT, McGregor IS, Banister SD. Off-target pharmacological profiling of synthetic cannabinoid receptor agonists including AMB-FUBINACA, CUMYL-PINACA, PB-22, and XLR-11. Front Psychiatry 2022; 13:1048836. [PMID: 36590635 PMCID: PMC9798004 DOI: 10.3389/fpsyt.2022.1048836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances that have been associated with multiple instances and types of toxicity. Some SCRAs appear to carry a greater toxicological burden than others, or compared to the prototypical cannabis-derived agonist Δ9-tetrahydrocannabinol (Δ9-THC), despite a common primary mechanism of action via cannabinoid 1 (CB1) receptors. "Off-target" (i.e., non-CB1 receptor) effects could underpin this differential toxicity, although there are limited data around the activity of SCRAs at such targets. METHODS A selection of 7 SCRAs (AMB-FUBINACA, XLR11, PB-22, AKB-48, AB-CHMINICA, CUMYL-PINACA, and 4F-MDMB-BUTINACA), representing several distinct chemotypes and toxicological profiles, underwent a 30 μM single-point screen against 241 G protein-coupled receptor (GPCR) targets in antagonist and agonist mode using a cellular β-arrestin recruitment assay. Strong screening "hits" at specific GPCRs were followed up in detail using concentration-response assays with AMB-FUBINACA, a SCRA with a particularly notable history of toxicological liability. RESULTS The single-point screen yielded few hits in agonist mode for any compound aside from CB1 and CB2 receptors, but many hits in antagonist mode, including a range of chemokine receptors, the oxytocin receptor, and histamine receptors. Concentration-response experiments showed that AMB-FUBINACA inhibited most off-targets only at the highest 30 μM concentration, with inhibition of only a small subset of targets, including H1 histamine and α2B adrenergic receptors, at lower concentrations (≥1 μM). AMB-FUBINACA also produced concentration-dependent CB1 receptor signaling disruption at concentrations higher than 1 μM, but did not produce overt cytotoxicity beyond CP55,940 or Δ9-THC in CB1 expressing cells. DISCUSSION These results suggest that while some "off-targets" could possibly contribute to the SCRA toxidrome, particularly at high concentrations, CB1-mediated cellular dysfunction provides support for hypotheses concerning on-target, rather than off-target, toxicity. Further investigation of non-GPCR off-targets is warranted.
Collapse
Affiliation(s)
- Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Michael T Bowen
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Xiao N, Chai H, Omoloja A. Substance use among adolescents and young adults with chronic kidney disease or kidney failure. Pediatr Nephrol 2021; 36:3585-3593. [PMID: 33686466 DOI: 10.1007/s00467-021-05001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Substance use, a significant public health issue, is well described in the adult chronic kidney disease (CKD) population. Knowledge about substance use in the adolescent and young adult (AYA) CKD population such as prevalence, impact on kidney function, medication adherence, and psychosocial well-being remain largely unknown. Awareness of and inquiring about substance use is paramount to providing evidence-based care and preparation to transition to adult-focused health services. The authors in this review identify commonly used substances (alcohol, tobacco, marijuana, etc.) and how they impact kidney function and care of the AYA with CKD or kidney failure. Recommendations for screening and intervention strategies are provided.
Collapse
Affiliation(s)
- Nianzhou Xiao
- Department of Nephrology, Valley Children's Healthcare, Madera, CA, USA
| | - Hua Chai
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Abiodun Omoloja
- Department of Pediatrics, Wright State University, Dayton, OH, USA.
- Division of Nephrology, Dayton Children's Hospital, One Children's Plaza, Dayton, OH, 45404, USA.
| |
Collapse
|
14
|
Suicide by vaping the synthetic cannabinoid 4F-MDMB-BINACA: cannabinoid receptors and fluoride at the crossroads of toxicity? Forensic Sci Med Pathol 2021; 17:684-688. [PMID: 34542803 DOI: 10.1007/s12024-021-00424-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A 22-year-old man was hospitalized after stating he would 'commit suicide in a non-detectable way'. He was admitted with a severe necrotizing pancreatitis and acute kidney injury, evolving to multiple organ failure. His condition rapidly deteriorated, and he died 11 days after hospital admission. Postmortem histopathology confirmed fulminant necrotizing pancreatitis, acute tubular necrosis, cerebral edema, pericentral/midzonal hepatocellular necrosis and acute respiratory distress syndrome. Metabolites of 4F-MDMB-BINACA, a synthetic cannabinoid, were detected in urine and serum collected at hospital admission. The same drug was found in a vapor fluid found in the man's apartment. As cannabis use has been etiologically linked to acute pancreatitis, we hypothesize that the more afferent and potent 4F-MDMB-BINACA could induce acute pancreatitis via stimulation of cannabinoid (CB)1-receptors. Alternatively, terminal fluorination could have induced a dose-dependent toxic effect on a wide range of cellular processes, leading to cell dysfunction and death. This is the first clinicopathological description of a lethal intoxication with 4F-MDMB-BINACA, following extensive vaping. Toxic effects could either relate to CB-receptor binding or to direct fluoride toxicity.
Collapse
|
15
|
The Synthetic Cannabinoids THJ-2201 and 5F-PB22 Enhance In Vitro CB 1 Receptor-Mediated Neuronal Differentiation at Biologically Relevant Concentrations. Int J Mol Sci 2020; 21:ijms21176277. [PMID: 32872617 PMCID: PMC7503567 DOI: 10.3390/ijms21176277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 μM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.
Collapse
|
16
|
Effects of the synthetic cannabinoid XLR-11 on the viability and migration rates of human brain microvascular endothelial cells in a clinically-relevant model. Pharmacol Rep 2020; 72:1717-1724. [PMID: 32632915 DOI: 10.1007/s43440-020-00123-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are a group of newly-developed drugs that bind and activate endocannabinoid system receptors. Angiogenesis is a biological process in which new blood vessels are formed from preexistent blood vessels. It plays a vital role in tissue growth, wound healing, and embryogenesis. This study aims to investigate the effects of the synthetic cannabinoid XLR-11 on specific cellular functions such as viability and angiogenesis in vitro. METHODS Human brain microvascular endothelial cells (HBMECs) were cultured in DMEM/F12 medium supplemented with an endothelial cell growth kit. The MTT assay was used to investigate the viability of endothelial cells. An endothelial cell migration assay was used to investigate migration ability, while a tube formation assay was used to investigate the angiogenic capacity of the endothelial cells. RESULTS XLR-11 was found to enhance the viability of HBMECs. Moreover, the migration rate and angiogenic capacity significantly increased in the presence of various concentrations of XLR-11 compared to the control. CONCLUSION The current study shows that XLR-11 increases the viability of human brain microvascular endothelial cells and enhances angiogenesis in the brain in vitro, suggesting that XLR-11 could potentially be used as a therapeutic angiogenic drug in human brain injury treatment.
Collapse
|
17
|
Silva JP, Araújo AM, de Pinho PG, Carmo H, Carvalho F. Synthetic Cannabinoids JWH-122 and THJ-2201 Disrupt Endocannabinoid-Regulated Mitochondrial Function and Activate Apoptotic Pathways as a Primary Mechanism of In Vitro Nephrotoxicity at In Vivo Relevant Concentrations. Toxicol Sci 2020; 169:422-435. [PMID: 30796436 DOI: 10.1093/toxsci/kfz050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The widespread recreational use of synthetic cannabinoids (SCBs) represents a major public health issue, as reports of intoxications and deaths following SCB use rapidly mount up. Specifically, a direct link between SCB use and acute kidney injury (AKI) has been established, although the pathophysiologic mechanisms remain undefined. Here we assessed the in vitro nephrotoxicity of 3 commonly detected and structurally distinct SCBs-AB-FUBINACA, JWH-122, and THJ-2201-in human proximal tubule cells (HK-2), to ascertain potential similarities and/or differences regarding their nephrotoxicity signatures. We showed that 2 of the 3 SCBs tested, namely JWH-122 and THJ-2201, at in vivo relevant concentrations (1 nM-1 μM), triggered apoptotic cell death pathways, mainly through a shared mechanism involving the deregulation of mitochondrial function (ie, with mitochondrial membrane hyperpolarization and increased intracellular ATP levels), as the primary molecular signature of nephrotoxicity mechanism. Noteworthy, no SCB affected cell viability (MTT reduction, lactate dehydrogenase release, Neutral Red inclusion). Use of the cannabinoid receptor (CBR) antagonists SR141716A and SR144528, as well as HEK293T cells, which do not express CBRs, confirmed the involvement of these receptors in SCB-mediated mitochondrial membrane hyperpolarization but not on other events, suggesting an off-target action regulating SCB-induced kidney cell death. Our results further strengthen the relevance of the endocannabinoid system in maintaining mitochondrial function in kidney cells, as we demonstrate that HK-2 incubation with CBR antagonists or inhibitors of endocannabinoid biosynthesis (ie, methyl arachydonyl fluorophosphonate, tetrahydrolipstatin) alone produced deleterious effects similar to those now reported for SCBs. Overall, SCB-induced nephrotoxicity seems to be mainly regulated at the mitochondrial level, but the specific mechanisms involved require further clarification.
Collapse
Affiliation(s)
- João P Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Ana Margarida Araújo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Paula Guedes de Pinho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| |
Collapse
|
18
|
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94:1085-1133. [PMID: 32249347 PMCID: PMC7225206 DOI: 10.1007/s00204-020-02693-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Psychoactive substances with chemical structures or pharmacological profiles that are similar to traditional drugs of abuse continue to emerge on the recreational drug market. Internet vendors may at least temporarily sell these so-called designer drugs without adhering to legal statutes or facing legal consequences. Overall, the mechanism of action and adverse effects of designer drugs are similar to traditional drugs of abuse. Stimulants, such as amphetamines and cathinones, primarily interact with monoamine transporters and mostly induce sympathomimetic adverse effects. Agonism at μ-opioid receptors and γ-aminobutyric acid-A (GABAA) or GABAB receptors mediates the pharmacological effects of sedatives, which may induce cardiorespiratory depression. Dissociative designer drugs primarily act as N-methyl-D-aspartate receptor antagonists and pose similar health risks as the medically approved dissociative anesthetic ketamine. The cannabinoid type 1 (CB1) receptor is thought to drive the psychoactive effects of synthetic cannabinoids, which are associated with a less desirable effect profile and more severe adverse effects compared with cannabis. Serotonergic 5-hydroxytryptamine-2A (5-HT2A) receptors mediate alterations of perception and cognition that are induced by serotonergic psychedelics. Because of their novelty, designer drugs may remain undetected by routine drug screening, thus hampering evaluations of adverse effects. Intoxication reports suggest that several designer drugs are used concurrently, posing a high risk for severe adverse effects and even death.
Collapse
Affiliation(s)
- Dino Luethi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Währinger Strasse 13a, 1090, Vienna, Austria.
- Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria.
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
19
|
García S, Martín Giménez VM, Mocayar Marón FJ, Reiter RJ, Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol Histopathol 2020; 35:789-800. [PMID: 32154907 DOI: 10.14670/hh-18-212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generally, the development and progression of neurodegenerative diseases are associated with advancing age, so they are usually diagnosed in late adulthood. A primary mechanism underlying the onset of neurodegenerative diseases is neuroinflammation. Based on this background, the concept of "neuroinflammaging" has emerged. In this deregulated neuroinflammatory process, a variety of immune cells participate, especially glial cells, proinflammatory cytokines, receptors, and subcellular organelles including mitochondria, which are mainly responsible for maintaining redox balance at the cellular level. Senescence and autophagic processes also play a crucial role in the neuroinflammatory disease associated with aging. Of particular interest, melatonin, cannabinoids, and the receptors of both molecules which are closely related, exert beneficial effects on the neuroinflammatory processes that precede the onset of neurodegenerative pathologies such as Parkinson's and Alzheimer's diseases. Some of these neuroprotective effects are fundamentally related to its anti-inflammatory and antioxidative actions at the mitochondrial level due to the strategic functions of this organelle. The aim of this review is to summarize the most recent advances in the study of neuroinflammation and neurodegeneration associated with age and to consider the use of new mitochondrial therapeutic targets related to the endocannabinoid system and the pineal gland.
Collapse
Affiliation(s)
- Sebastián García
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Virna Margarita Martín Giménez
- Institute of Research in Chemical Sciences, School of Chemical and Technological Sciences, Cuyo Catholic University, San Juan, Argentina
| | - Feres José Mocayar Marón
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina.,Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Cannabis (marijuana, weed, pot, ganja, Mary Jane) is the most commonly used federally illicit drug in the United States. The present review provides an overview of cannabis and cannabinoids with relevance to the practice of nephrology so that clinicians can best take care of patients. RECENT FINDINGS Cannabis may have medicinal benefits for treating symptoms of advanced chronic kidney disease (CKD) and end-stage renal disease including as a pain adjuvant potentially reducing the need for opioids. Cannabis does not seem to affect kidney function in healthy individuals. However, renal function should be closely monitored in those with CKD, the lowest effective dose should be used, and smoking should be avoided. Cannabis use may delay transplant candidate listing or contribute to ineligibility. Cannabidiol (CBD) has recently exploded in popularity. Although generally well tolerated, safe without significant side effects, and effective for a variety of neurological and psychiatric conditions, consumers have easy access to a wide range of unregulated CBD products, some with inaccurate labeling and false health claims. Importantly, CBD may raise tacrolimus levels. SUMMARY Patients and healthcare professionals have little guidance or evidence regarding the impact of cannabis use on people with kidney disease. This knowledge gap will remain as long as federal regulations remain prohibitively restrictive towards prospective research.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Alexandre J, Carmo H, Carvalho F, Silva JP. Synthetic cannabinoids and their impact on neurodevelopmental processes. Addict Biol 2020; 25:e12824. [PMID: 31441196 DOI: 10.1111/adb.12824] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
Abstract
Cannabinoids comprise a broad group of psychoactive substances that activate endogenous cannabinoid (EC) receptors (ie, CB1 R and CB2 R), altering neurotransmitter release in the brain. The importance of their regulatory role in different biological processes has prompted the development of synthetic cannabinoids (SCs), substantially more potent than tetrahydrocannabinol (THC, the main psychoactive substance of cannabis). Although SCs were primarily designed given their therapeutic applications, their recreational use has become a major public health concern due to several reports of severe intoxications and deaths. SCs have favored increased popularity over recent years due to their intensified psychoactive effects, compared with THC, turning regular cannabis users into SCs. Among cannabinoid users (mainly young people), pregnant women and women of child-bearing potential (WoCBP) comprise particular risk groups, due to the potential onset of neurodevelopment disorders in the offspring (eg, schizophrenia and autism spectrum disorders). Understanding the role played by cannabinoids, and the potential action of emerging SCs in the regulation of the neuronal function, especially during neuronal development, thus assumes critical relevance. Here, we review the mechanistic regulation of neuronal processes, namely during neuronal development, by the endocannabinoid system. Most important, we further develop on the potential of SCs to modulate such mechanisms and subsequently disrupt proper neurodevelopment.
Collapse
Affiliation(s)
- João Alexandre
- UCIBIO REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of Porto Portugal
| | - Helena Carmo
- UCIBIO REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of Porto Portugal
| | - Félix Carvalho
- UCIBIO REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of Porto Portugal
| | - João Pedro Silva
- UCIBIO REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of Porto Portugal
| |
Collapse
|
22
|
Abstract
Substances toxic to the kidney are legion in the modern world. The sheer number and variety, their mutual interactions and, metabolism within the body are a challenge to research. Moreover, the kidney is especially prone to injury owing to its physiology. Acute kidney injury (AKI) induced by poisonous or primarily nephrotoxic substances, may be community acquired with ingestion or inhalation or nosocomial. Many nephrotoxic plants, animal poisons, medications, chemicals and illicit drugs can induce AKI by varying pathophysiological pathways. Moreover, the epidemiology of toxic AKI varies depending on country, regions within countries, socioeconomic status and health care facilities. In this review, we have selected nephrotoxic insults due to medication, plants, animal including snake venom toxicity, environmental, (agri)chemicals and also illicit drugs. We conclude with a section on diagnosis, clinical presentation and management of poisoning accompanied by various organ dysfunction and AKI.
Collapse
Affiliation(s)
- Nadezda Petejova
- a Department of Internal Medicine , University Hospital Ostrava , Ostrava , Czech Republic.,b Department of Clinical Studies, Faculty of Medicine , University of Ostrava , Ostrava , Czech Republic.,c Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology , University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc , Czech Republic
| | - Arnost Martinek
- a Department of Internal Medicine , University Hospital Ostrava , Ostrava , Czech Republic.,b Department of Clinical Studies, Faculty of Medicine , University of Ostrava , Ostrava , Czech Republic
| | - Josef Zadrazil
- c Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology , University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc , Czech Republic
| | - Vladimir Teplan
- a Department of Internal Medicine , University Hospital Ostrava , Ostrava , Czech Republic.,d Department of Nephrology , Institute for Postgraduate Education Prague , Vinohrady , Czech Republic
| |
Collapse
|
23
|
Sachdev S, Vemuri K, Banister SD, Longworth M, Kassiou M, Santiago M, Makriyannis A, Connor M. In vitro determination of the efficacy of illicit synthetic cannabinoids at CB 1 receptors. Br J Pharmacol 2019; 176:4653-4665. [PMID: 31412133 DOI: 10.1111/bph.14829] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation of CB1 receptors and is a major health concern. The properties of SCRA at CB1 receptors are not well defined. Here we have developed an assay to determine acute CB1 receptor efficacy using receptor depletion with the irreversible CB1 receptor antagonist AM6544, with application of the Black and Leff operational model to calculate efficacy. EXPERIMENTAL APPROACH Receptor depletion in mouse AtT-20 pituitary adenoma cells stably expressing human CB1 receptors was achieved by pretreatment of cells with AM6544 (10 μM, 60 min). The CB1 receptor-mediated hyperpolarisation of AtT-20 cells was measured using fluorescence-based membrane potential dye. From data fit to the operational model, the efficacy (τ) and affinity (KA ) parameters were obtained for each drug. KEY RESULTS AM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarization. The τ value of ∆9 -THC was 80-fold less than the reference CB receptor agonist CP55940 and 260-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. The operational efficacy of SCRAs ranged from 233 (5F-MDMB-PICA) to 28 (AB-PINACA), with CP55940 in the middle of the efficacy rank order. There was no correlation between the τ and KA values. CONCLUSIONS AND IMPLICATIONS All SCRAs tested showed substantially higher efficacy at CB1 receptors than ∆9 -THC, which may contribute to the adverse effects seen with these drugs but not ∆9 -THC.
Collapse
Affiliation(s)
- Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Chemistry, The University of Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Almada M, Alves P, Fonseca BM, Carvalho F, Queirós CR, Gaspar H, Amaral C, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol Lett 2019; 319:129-137. [PMID: 31730886 DOI: 10.1016/j.toxlet.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023]
Abstract
The increasing use of synthetic cannabinoids (SCBs) in recreational settings is becoming a new paradigm of drug abuse. Although SCBs effects mimic those of the Cannabis sativa plant, these drugs are frequently more potent and hazardous. It is known that endocannabinoid signalling plays a crucial role in diverse reproductive events such as placental development. Moreover, the negative impact of the phytocannabinoid Δ9-tetrahydrocannabinol (THC) in pregnancy outcome, leading to prematurity, intrauterine growth restriction and low birth weight is well recognized, which makes women of childbearing age a sensitive group to developmental adverse effects of cannabinoids. Placental trophoblast turnover relies on regulated processes of proliferation and apoptosis for normal placental development. Here, we explored the impact of the SCBs JWH-018, JWH-122 and UR-144 and of the phytocannabinoid THC in BeWo cell line, a human placental cytotrophoblast cell model. All the cannabinoids caused a significant decrease in cell viability without LDH release, though this effect was only detected for the highest concentrations of THC. Moreover, a cell cycle arrest at the G2/M phase was also observed. JWH-018 and JWH-122 increased reactive oxygen species (ROS) production and THC, UR-144 and JWH-122 caused loss of mitochondrial membrane potential. All the compounds were able to induce caspase-9 activation. The involvement of apoptotic pathways was further confirmed through the significant increase in caspase -3/-7 activities. For UR-144, this effect was reversed by the CB1 antagonist AM281, for JWH-018 and THC this effect was mediated by both cannabinoid receptors CB1 and CB2 while for JWH-122 it was cannabinoid receptor-independent. This work demonstrates that THC and SCBs are able to induce apoptotic cell death. Although they may act through different mechanisms and potencies, the studied cannabinoids have the potential to disrupt gestational fundamental events.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Cláudio R Queirós
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Natércia A Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal.
| |
Collapse
|
25
|
Li C, Chen W, Zheng L, Zhang B, Yang X, Zhang Q, Wang N, Wang Y, Yang J, Sha J, Zhou Z, Li X, Li Y, Shen XL. Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75. Toxicon 2019; 168:141-146. [PMID: 31356822 DOI: 10.1016/j.toxicon.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin ubiquitous in feeds and foodstuffs. The water-insoluble pentacyclic triterpene bioactive compound, ursolic acid (UA), is widespread in various cuticular waxes of edible fruits, food materials, and medicinal plants. Although studies have reported that oxidative stress was involved in both the nephrotoxicity of OTA and the renoprotective function of UA, the role of stress-responsive Lon protease 1 (Lonp1) in the renoprotection of UA against OTA is still unknown. In this study, cell viability, reactive oxygen species (ROS) production, and several proteins' expressions of human embryonic kidney 293T (HEK293T) cells in response to UA, OTA, and/or Lonp1 inhibitor CDDO-me treatment were detected to reveal the protective mechanism of UA against OTA-induced renal cytotoxicity. Results indicated that a 2 h-treatment of 1 μM UA could significantly alleviate the ROS production and cell death induced by a 24 h-treatment of 8 μM OTA in HEK293T cells (P < 0.05). Compared with the control, the protein expressions of Lonp1, Aco2 and Hsp75 were significantly inhibited after 8 μM OTA treating for 24 h (P < 0.05), which could be notably reversed by the pre-treatment and post-treatment of 1 μM UA (P < 0.05). The protein expressions of Lonp1, Aco2 and Hsp75 were inhibited by the addition of CDDO-me. The three protein expression trends were similar before and after the addition of CDDO-me. In conclusion, OTA could inhibit the expression of Lonp1, suppressing Aco2 and Hsp75 as a result, thereby activating ROS and inducing cell death in HEK293T cells, which could be alleviated by UA pre-treatment.
Collapse
Affiliation(s)
- Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| | - Lirong Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Xuqin Yang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Ning Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, PR China.
| | - Yan Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, PR China.
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Jingzhou Sha
- Sichuan Provincial Department of Ecology and Environment, Chengdu, 610000, PR China; Solid Waste and Chemical Management Center in Sichuan Province, Chengdu, 610000, PR China.
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, 102442, PR China.
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
26
|
Garonzik-Wang JM, Lonze BE, Ruck JM, Luo X, Massie AB, Melancon K, Burdick JF, Segev DL, Sun Z. Mitochondrial membrane potential and delayed graft function following kidney transplantation. Am J Transplant 2019; 19:585-590. [PMID: 30408329 PMCID: PMC6349555 DOI: 10.1111/ajt.15174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) complicates 20%-40% of deceased-donor kidney transplants and is associated with increased length of stay and subsequent allograft failure. Accurate prediction of DGF risk for a particular allograft could influence organ allocation, patient counseling, and postoperative planning. Mitochondrial dysfunction, a reported surrogate of tissue health in ischemia-perfusion injury, might also be a surrogate for tissue health after organ transplantation. To understand the potential of mitochondrial membrane potential (MMP) in clinical decision-making, we analyzed whether lower MMP, a measure of mitochondrial dysfunction, was associated with DGF. In a prospective, single-center proof-of-concept study, we measured pretransplant MMP in 28 deceased donor kidneys and analyzed the association between MMP and DGF. We used hybrid registry-augmented regression to adjust for donor and recipient characteristics, minimizing overfitting by leveraging Scientific Registry of Transplant Recipients data. The range of MMP levels was 964-28 333 units. Low-MMP kidneys (MMP<4000) were more likely from female donors (75% vs 10%, P = .002) and donation after cardiac death donors (75% vs 12%, P = .004). For every 10% decrease in MMP levels, there were 38% higher odds of DGF (adjusted odds ratio = 1.08 1.381.78 , P = .01). In summary, MMP might be a promising pretransplant surrogate for tissue health in kidney transplantation and, after further validation, could improve clinical decision-making through its independent association with DGF.
Collapse
Affiliation(s)
| | - Bonnie E. Lonze
- Department of Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Jessica M. Ruck
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xun Luo
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan B. Massie
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Keith Melancon
- George Washington University Hospital, Washington, DC, USA
| | - James F. Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorry L. Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Fonseca BM, Fernandes R, Almada M, Santos M, Carvalho F, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids and endometrial stromal cell fate: Dissimilar effects of JWH-122, UR-144 and WIN55,212-2. Toxicology 2019; 413:40-47. [PMID: 30502353 DOI: 10.1016/j.tox.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
|
28
|
Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci 2019; 9:brainsci9010014. [PMID: 30654473 PMCID: PMC6357179 DOI: 10.3390/brainsci9010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The chief psychoactive constituent of many bioactive phytocannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, Cannabis sativa, acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized. Cannabinoid receptor type 1 (CB1R) is found to serve as the archetype for cannabinoid action in the brain. They have attracted wide interest as the mediator of all psychoactive properties of exogenous and endogenous cannabinoids and they are abundantly expressed on most inhibitory and excitatory neurons. Recent evidence established that cannabinoid receptor type 2 (CB2R) is also expressed in the neurons at both presynaptic and postsynaptic terminals and are involved in neuropsychiatric effects. Distinct types of cells in many regions in the brain express CB2Rs and the cellular origin of CB2Rs that induce specific behavioral effects are emerging. To mimic the bliss effects of marijuana, synthetic cannabinoids (SCBs) have been sprayed onto plant material, and this plant material has been consequently packaged and sold under brand name “Spice” or “K2”. These SCBs have been shown to maintain their affinity and functional activity for CB1R and CB2R and have been shown to cause severe harmful effects when compared to the effects of Δ9-THC. The present review discusses the potential brain mechanisms that are involved in the deleterious effects of SCBs.
Collapse
|
29
|
Banister SD, Connor M. The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution. Handb Exp Pharmacol 2018; 252:191-226. [PMID: 30105473 DOI: 10.1007/164_2018_144] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are the largest and most structurally diverse class of new psychoactive substances (NPS). Although the earliest SCRA NPS were simply repurposed from historical academic manuscripts or pharmaceutical patents describing cannabinoid ligands, recent examples bear hallmarks of rational design. SCRA NPS manufacturers have applied traditional medicinal chemistry strategies (such as molecular hybridization, bioisosteric replacement, and scaffold hopping) to existing cannabinoid templates in order to generate new molecules that circumvent structure-based legislation. Most SCRAs potently activate cannabinoid type 1 and type 2 receptors (CB1 and CB2, respectively), with the former contributing to the psychoactivity of these substances. SCRAs are generally more toxic than the Δ9-tetrahydrocannabinol (Δ9-THC) found in cannabis, and this may be due to ligand bias, metabolism, or off-target activity. This chapter will chart the evolution of recently identified SCRA NPS chemotypes, as well as their putative manufacturing by-products and thermolytic degradants, and describe structure-activity relationships within each class.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|