1
|
Paracrine interleukin-8 affects mesenchymal stem cells through the Akt pathway and enhances human umbilical vein endothelial cell proliferation and migration. Biosci Rep 2021; 41:228273. [PMID: 33843989 PMCID: PMC8493446 DOI: 10.1042/bsr20210198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Interleukin-8 (IL-8) promotes cell homing and angiogenesis, but its effects on activating human bone marrow mesenchymal stem cells (BMSCs) and promoting angiogenesis are unclear. We used bioinformatics to predict these processes. In vitro, BMSCs were stimulated in a high-glucose (HG) environment with 50 or 100 μg/ml IL-8 was used as the IL-8 group. A total of 5 μmol/l Triciribine was added to the two IL-8 groups as the Akt inhibitor group. Cultured human umbilical vein endothelial cells (HUVECs) were cultured in BMSCs conditioned medium (CM). The changes in proliferation, apoptosis, migration ability and levels of VEGF and IL-6 in HUVECs were observed in each group. Seventy processes and 26 pathways were involved in vascular development, through which IL-8 affected BMSCs. Compared with the HG control group, HUVEC proliferation absorbance value (A value), Gap closure rate, and Transwell cell migration rate in the IL-8 50 and IL-8 100 CM groups were significantly increased (P<0.01, n=30). However, HUVEC apoptosis was significantly decreased (P<0.01, n=30). Akt and phospho-Akt (P-Akt) protein contents in lysates of BMSCs treated with IL-8, as well as VEGF and IL-6 protein contents in the supernatant of BMSCs treated with IL-8, were all highly expressed (P<0.01, n=15). These analyses confirmed that IL-8 promoted the expression of 41 core proteins in BMSCs through the PI3K Akt pathway, which could promote the proliferation and migration of vascular endothelial cells. Therefore, in an HG environment, IL-8 activated the Akt signaling pathway, promoted paracrine mechanisms of BMSCs, and improved the proliferation and migration of HUVECs.
Collapse
|
2
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Rothmiller S, Jäger N, Meier N, Meyer T, Neu A, Steinritz D, Thiermann H, Scherer M, Rummel C, Mangerich A, Bürkle A, Schmidt A. Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Arch Toxicol 2021; 95:727-747. [PMID: 33491125 PMCID: PMC7870771 DOI: 10.1007/s00204-020-02946-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Wound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.
Collapse
Affiliation(s)
- Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Niklas Jäger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Nicole Meier
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Thimo Meyer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Adrian Neu
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Michael Scherer
- Department of Traumatology and Orthopedics, HELIOS Amper Clinics, Krankenhausstraße 15, 85221, Dachau, Germany
| | - Christoph Rummel
- Department of Orthopedics and Sports Medicine, Wolfart Clinic, Waldstraße 7, 82166, Gräfelfing, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
- Faculty of Human Sciences, Institute for Sports Sciences, Universität Der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| |
Collapse
|
4
|
Businaro R, Maggi E, Armeli F, Murray A, Laskin DL. Nutraceuticals as potential therapeutics for vesicant-induced pulmonary fibrosis. Ann N Y Acad Sci 2020; 1480:5-13. [PMID: 32725637 PMCID: PMC7936651 DOI: 10.1111/nyas.14442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Exposure to vesicants, including sulfur mustard and nitrogen mustard, causes damage to the epithelia of the respiratory tract and the lung. With time, this progresses to chronic disease, most notably, pulmonary fibrosis. The pathogenic process involves persistent inflammation and the release of cytotoxic oxidants, cytokines, chemokines, and profibrotic growth factors, which leads to the collapse of lung architecture, with fibrotic involution of the lung parenchyma. At present, there are no effective treatments available to combat this pathological process. Recently, much interest has focused on nutraceuticals, substances derived from plants, herbs, and fruits, that exert pleiotropic effects on inflammatory cells and parenchymal cells that may be useful in reducing fibrogenesis. Some promising results have been obtained with nutraceuticals in experimental animal models of inflammation-driven fibrosis. This review summarizes the current knowledge on the putative preventive/therapeutic efficacy of nutraceuticals in progressive pulmonary fibrosis, with a focus on their activity against inflammatory reactions and profibrotic cell differentiation.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
5
|
Lu W, Xu W, Li J, Chen Y, Pan Y, Wu B. Effects of vascular endothelial growth factor and insulin growth factor‑1 on proliferation, migration, osteogenesis and vascularization of human carious dental pulp stem cells. Mol Med Rep 2019; 20:3924-3932. [PMID: 31485628 DOI: 10.3892/mmr.2019.10606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Affiliation(s)
- Wanyu Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenan Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuhua Pan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
6
|
Ghazanfari T, Ghaffarpour S, Kariminia A, Salehi E, Hashemi SM, Ardestani SK, Gohari Moghadam K, Mirsharif ES, Dilmaghanian R, Fadaei A, Faghihzadeh S. Circulating mesenchymal stem cells in sulfur mustard-exposed patients with long-term pulmonary complications. Toxicol Lett 2019; 312:188-194. [PMID: 31095986 DOI: 10.1016/j.toxlet.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Sulfur mustard (SM) is a toxic agent that causes acute and long-term pulmonary complications. Recent evidence has shown the impact of SM on mesenchymal stem cells (MSCs). These cells have a critical role in repairing the damaged tissues. In this study, we evaluated the mobilization of MSCs in SM-exposed patients with long-term pulmonary complications. Fifty-nine SM-injured patients with prolonged pulmonary complications and 20 healthy individuals were included. Patients were classified based on taking drugs, having comorbidities, and severity of respiratory consequence. MSCs with phenotype of CD45-CD44+CD29+CD105+ were evaluated in peripheral blood using flow cytometry. Circulating MSCs were lower in SM-exposed patients compared to the control group (0.93 vs. 2.72 respectively, P = 0.005). No significant difference was observed in the MSC count between patients taking corticosteroids or antibiotics and those patients not taking them. Comorbidities like liver and kidney diseases had changed the count of MSCs in SM-exposed subjects. In addition, the frequency of MSCs did not show any association with the severity of long-term pulmonary complications. In conclusion, SM-exposure causes a decline in the frequency of circulating MSCs in survivors. The lower number of the peripheral MSC population in SM-exposed patients was not affected by taking corticosteroids or antibiotics, but comorbidities are probably involved in MSC frequency. The decreases observed in the number of circulating MSCs was not associated with the severity of the pulmonary complications; however, further studies in mustard lung models are required to demonstrate the therapeutic or pathologic role of MSCs in SM injuries.
Collapse
Affiliation(s)
- Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran; Department of Immunology, Shahed University, 1471, North Karegar Street, Tehran, Islamic Republic of Iran.
| | - Sara Ghaffarpour
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| | - Amina Kariminia
- British Columbia Children's Hospital Research Institute, Pediatrics Department, Faculty of, Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eisa Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medica, Sciences, Tehran, Islamic Republic of Iran
| | | | - Keivan Gohari Moghadam
- Internal Medicine Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Razieh Dilmaghanian
- Immunoregulation Research Center, Shahed University, Tehran, Islamic Republic of Iran
| | - Abbas Fadaei
- Department of Pulmonology and Intensive Care Medicine, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Soghrat Faghihzadeh
- Department of Biostatistics and Social Medicine, Zanjan University of Medical Sciences, Zanjan, Islamic Republic of Iran
| |
Collapse
|