1
|
Tsai JF, Yu FY, Liu BH. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. CHEMOSPHERE 2024; 365:143352. [PMID: 39293683 DOI: 10.1016/j.chemosphere.2024.143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly present in various foods and feeds worldwide, as well as dietary supplements in Asian countries, but the risks and cellular mechanisms associated with its cardiotoxicity remains unclear. In this study, RNA-seq analysis of CTN-treated H9c2 cardiac cells demonstrated significant perturbations in pathways related to microtubule cytoskeleton and mitochondrial network organization. CTN disrupted microtubule polymerization and downregulated mRNA levels of microtubule-assembling genes, Map2 and Tpx2, in H9c2 cardiac cells. Additionally, CTN interfered with the distribution of mitochondrial network along the microtubules, leading to the accumulation of dysfunctional mitochondria characterized by elevated superoxide levels and reduced membrane potential. This disruption also caused the buildup of lysosomes and ubiquitinated proteins, which hindered waste clearance in microtubule-disassembled H9c2 cells. Molecular docking analysis indicated that CTN could bind to the colchicine binding site on β-tubulin, thereby mimicking the microtubule-disrupting effect of colchicine. This study provides morphological, transcriptomic, and mechanistic evidence to elucidate the cardiotoxic mechanisms of CTN, which involve the dysregulated microtubule network, subsequent mitochondrial mislocalization, and impaired proteolysis of damaged proteins/organelles in cardiac cells. Our findings may enhance the fundamental understanding and facilitate future risk assessment of CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Tsai JF, Wu TS, Huang YT, Lin WJ, Yu FY, Liu BH. Exposure to Mycotoxin Citrinin Promotes Carcinogenic Potential of Human Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19054-19065. [PMID: 37988173 DOI: 10.1021/acs.jafc.3c05218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Mycotoxin citrinin (CTN), commonly found in food and health supplements, may induce chromosomal instability. In this study, human renal proximal tubule epithelial cells (hRPTECs) that were exposed to CTN (10 and 20 μM) over 3 days exhibited numerical chromosomal aberrations. Short-term (3 days) and long-term (30 days) exposures to CTN significantly promoted mitotic spindle abnormalities, wound healing, cell migration, and anchorage-independent growth in human embryonic kidney 293 (HEK293) cells. Short-term exposure to 10 and 20 μM CTN increased the number of migrated cells on day 10 by 1.7 and 1.9 times, respectively. The number of anchorage-independent colonies increased from 2.2 ± 1.3 to 7.8 ± 0.6 after short-term exposure to 20 μM CTN and from 2.0 ± 1.0 to 12.0 ± 1.2 after long-term exposure. The transcriptomic profiles of CTN-treated HEK293 were subjected to over-representative analysis (ORA), gene set enrichment analysis (GSEA), and Ingenuity pathway analysis (IPA). Short-term exposure to CTN promoted the RTK/KRAS/RAF/MAPK cascade, while long-term exposure altered the extracellular matrix organization. Both short- and long-term CTN exposure activated cancer and cell cycle-related signaling pathways. These results demonstrate the carcinogenic potential of CTN in human cells and provide valuable insights into the cancer risk associated with CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Ju Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
3
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
4
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
5
|
Lu Y, Guo Y, Liang X, Huang H, Ling X, Su Z, Liang Y. The recognition of aristolochic acid I based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1963-1972. [PMID: 35531633 DOI: 10.1039/d2ay00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aristolochic acid I (AAI) is one of the nephrotoxic derivatives present in genera Aristolochia and Asarum. Although some detection strategies for monitoring AAI have been reported, the application of these methods is limited because they involve tedious preparation and require professional operation. In this work, bovine serum albumin (BSA) has been introduced as a reducing agent and stabilizing agent to synthesize gold nanoclusters with strong red fluorescence for the rapid and effective detection of AAI. Under excitation at 328 nm, the fluorescence intensity at the maximum emission wavelength of the bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) decreased with the addition of AAI, and the degree of quenching showed a linear relationship with the concentration of AAI from 0.1-12.8 μg mL-1. The obtained BSA-AuNCs were stable, and quenching in the presence of AAI could be achieved within 10 seconds. Here, we have focused on the application of these gold nanoclusters as an optical sensing material for AAI in rat urine samples, including a discussion on the detection mechanism. The detection result of the fluorescent probe was consistent with that of the HPLC method. In view of this reality, the reported protein-AuNCs sensing platform can serve as a convenient detection strategy in toxicological analyses.
Collapse
Affiliation(s)
- Yating Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xue Ling
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
6
|
Wang YC, Ku WC, Liu CY, Cheng YC, Chien CC, Chang KW, Huang CJ. Supplementation of Probiotic Butyricicoccus pullicaecorum Mediates Anticancer Effect on Bladder Urothelial Cells by Regulating Butyrate-Responsive Molecular Signatures. Diagnostics (Basel) 2021; 11:diagnostics11122270. [PMID: 34943506 PMCID: PMC8700285 DOI: 10.3390/diagnostics11122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
In bladder cancer, urothelial carcinoma is the most common histologic subtype, accounting for more than 90% of cases. Pathogenic effects due to the dysbiosis of gut microbiota are localized not only in the colon, but also in regulating bladder cancer distally. Butyrate, a short-chain fatty acid produced by gut microbial metabolism, is mainly studied in colon diseases. Therefore, the resolution of the anti-cancer effects of butyrate-producing microbes on bladder urothelial cells and knowledge of the butyrate-responsive molecules must have clinical significance. Here, we demonstrate a correlation between urothelial cancer of the bladder and Butyricicoccus pullicaecorum. This butyrate-producing microbe or their metabolite, butyrate, mediated anti-cancer effects on bladder urothelial cells by regulating cell cycle, cell growth, apoptosis, and gene expression. For example, a tumor suppressor against urothelial cancer of the bladder, bladder cancer-associated protein, was induced in butyrate-treated HT1376 cells, a human urinary bladder cancer cell line. In conclusion, urothelial cancer of the bladder is a significant health problem. To improve the health of bladder urothelial cells, supplementation of B. pullicaecorum may be necessary and can further regulate butyrate-responsive molecular signatures.
Collapse
Affiliation(s)
- Yen-Chieh Wang
- Department of Urology, Cathay General Hospital, Taipei 106438, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan; (W.-C.K.); (C.-Y.L.); (Y.-C.C.); (C.-C.C.)
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan; (W.-C.K.); (C.-Y.L.); (Y.-C.C.); (C.-C.C.)
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan; (W.-C.K.); (C.-Y.L.); (Y.-C.C.); (C.-C.C.)
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei 221037, Taiwan
| | - Yu-Che Cheng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan; (W.-C.K.); (C.-Y.L.); (Y.-C.C.); (C.-C.C.)
- Department of Medical Research, Cathay General Hospital, Taipei 106438, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Chih-Cheng Chien
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan; (W.-C.K.); (C.-Y.L.); (Y.-C.C.); (C.-C.C.)
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan;
- Laboratory Animal Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 106438, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei 114201, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Gao C, Zhang Q, Ma L, Lu X, Wu S, Song P, Xia L. Dual‐spectroscopic real‐time monitoring of the reduction reaction between aristolochic acid I and Fe
2+
and its bio‐application. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ce Gao
- Department of Chemistry Liaoning University Shenyang China
| | - Qijia Zhang
- Department of Chemistry Liaoning University Shenyang China
| | - Liping Ma
- Department of Chemistry Liaoning University Shenyang China
| | - Xuemei Lu
- Department of Physics Liaoning University Shenyang China
| | - Shiwei Wu
- Department of Chemistry Liaoning University Shenyang China
- Experimental Center Shenyang Normal University Shenyang China
| | - Peng Song
- Department of Physics Liaoning University Shenyang China
| | - Lixin Xia
- Department of Chemistry Liaoning University Shenyang China
- College of Chemistry and Environmental Engineering Yingkou Institute of Technology Yingkou China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.
Collapse
|
9
|
Zhang M, Liu H, Han Y, Bai L, Yan H. A review on the pharmacological properties, toxicological characteristics, pathogenic mechanism and analytical methods of aristolochic acids. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haiyan Liu
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yamei Han
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ligai Bai
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of pharmacy, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
10
|
Fang L, Tian M, Row KH, Yan X, Xiao W. Isolation of aristolochic acid I from herbal plant using molecular imprinted polymer composited ionic liquid‐based zeolitic imidazolate framework‐67. J Sep Sci 2019; 42:3047-3053. [DOI: 10.1002/jssc.201900554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Luwei Fang
- College of Chemistry and Environmental EngineeringYangtze University Jingzhou Hubei P. R. China
| | - Minglei Tian
- College of Chemistry and Environmental EngineeringYangtze University Jingzhou Hubei P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical EngineeringInha University Incheon Korea
| | - Xuemin Yan
- College of Chemistry and Environmental EngineeringYangtze University Jingzhou Hubei P. R. China
| | - Wei Xiao
- College of Chemistry and Environmental EngineeringYangtze University Jingzhou Hubei P. R. China
| |
Collapse
|
11
|
KIF5A Promotes Bladder Cancer Proliferation In Vitro and In Vivo. DISEASE MARKERS 2019; 2019:4824902. [PMID: 31354888 PMCID: PMC6636440 DOI: 10.1155/2019/4824902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Background Bladder cancer is a common malignancy with uncontrolled and rapid growth. Although lots of the important regulatory networks in bladder cancer have been found, the cancer-relevant genes remain to be further identified. Methods We examined the KIF5A expression levels in bladder cancer and normal bladder tissue samples via immunohistochemistry and observed the effect of KIF5A on bladder tumor cell proliferation in vitro and in vivo. Additionally, a coexpression between KIF5A and KIF20B in tumor tissues was explored. Results KIF5A expression level was higher in the bladder cancer tissues than in the adjacent nontumor tissues. Patients with higher KIF5A expression displayed advanced clinical features and shorter survival time than those with lower KIF5A expression. Moreover, KIF5A knockdown inhibited bladder cancer cell proliferation, migration, and invasion demonstrated in vivo and in vitro. In addition, coexpression was found between KIF5A and KIF20B in tumor tissues. Conclusion The results demonstrated that KIF5A is a critical regulator in bladder cancer development and progression, as well as a potential target in the treatment of bladder cancer.
Collapse
|
12
|
Dual ionic liquid-immobilized silicas for multi-phase extraction of aristolochic acid from plants and herbal medicines. J Chromatogr A 2019; 1592:31-37. [DOI: 10.1016/j.chroma.2019.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
|
13
|
Li S, Wu X, Song S, Zheng Q, Kuang H. Development of ic-ELISA and an immunochromatographic strip assay for the detection of aristolochic acid Ⅰ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1551331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shaozhen Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | | | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|