1
|
Tao H, Fang C, Xiao Y, Jin Y. The toxicity and health risk of chlorothalonil to non-target animals and humans: A systematic review. CHEMOSPHERE 2024; 358:142241. [PMID: 38705408 DOI: 10.1016/j.chemosphere.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
2
|
Wang YS, Yang SJ, Wan ZX, Shen A, Ahmad MJ, Chen MY, Huo LJ, Pan JH. Chlorothalonil exposure compromised mouse oocyte in vitro maturation through inducing oxidative stress and activating MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116100. [PMID: 38367607 DOI: 10.1016/j.ecoenv.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Xuan Wan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ao Shen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hua Pan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
3
|
Li Y, He X, Sun B, Hu N, Li J, You R, Tao F, Fang L, Li Y, Zhai Q. Combined exposure of beta-cypermethrin and emamectin benzoate interferes with the HPO axis through oxidative stress, causing an imbalance of hormone homeostasis in female rats. Reprod Toxicol 2024; 123:108502. [PMID: 37984602 DOI: 10.1016/j.reprotox.2023.108502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
The impact of pesticides on reproductive health has been increasingly recognized. β-cypermethrin (β-CYP) and emamectin benzoate (EMB) are commonly used with agricultural workers. There are few published studies on the effects of combined poisoning of these two pesticides on the reproductive system. This study investigated the toxic effects and mechanism of β-CYP and EMB on the reproductive system of female rats based on the hypothalamic-pituitary-ovarian (HPO) axis. The hypothalamic GnRH content tended to decrease, and Kiss-1 and GPR-54 mRNA and protein expression tended to increase in exposed rats. FSH content was elevated for the pituitary gland, and Kiss-1 and GPR-54 mRNA and protein expression were enhanced in all experimental groups compared with the control group. E2 content in rat ovaries and ERα mRNA and protein expression were reduced by β-CYP and EMB. Furthermore, there were interactive effects of β-CYP and EMB on FSH and E2 release, pituitary GPR-54 mRNA and protein, and ovarian ERα mRNA expression. To investigate causes of damage, oxidative damage indicators were tested and showed that exposure to β-CYP and EMB decreased GSH-Px and SOD activities in the HPO axis, increased MDA levels in the hypothalamus and ovary together with LDH activities in the HPO axis, with an interaction effect on GSH-Px and SOD activities in the hypothalamus and pituitary gland as well as on MDA in the ovary. The above results support the screening of sensitive molecular biomarkers and evaluation of the adverse effects of pesticide exposure in greenhouse operations on reproductive health.
Collapse
Affiliation(s)
- Yuxin Li
- School of Public Health, Weifang Medical University, Weifang 261053, China; Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Xianzhi He
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Bin Sun
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Nannan Hu
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Jiamin Li
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ruolan You
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yuanyuan Li
- Department of Neonatology, Weifang Maternal and Child Health Hospital, Weifang 261011, China.
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Dolatabadi M, Ehrampoush MH, Pournamdari M, Ebrahimi AA, Fallahzadeh H, Ahmadzadeh S. Catalytic electrodes' characterization study serving polluted water treatment: environmental healthcare and ecological risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:594-602. [PMID: 37605342 DOI: 10.1080/03601234.2023.2247943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Pesticide residues in the environment have irreparable effects on human health and other organisms. Hence, it is necessary to treat and degrade them from polluted water. In the current work, the electrochemical removal of the fenitrothion (FT), trifluralin (TF), and chlorothalonil (CT) pesticides were performed by catalytic electrode. The characteristics of SnO2-Sb2O3, PbO2, and Bi-PbO2 electrodes were described by FE-SEM and XRD. Dynamic electrochemical techniques including cyclic voltammetry, electrochemical impedance spectroscopy, accelerated life, and linear polarization were employed to investigate the electrochemical performance of fabricated electrodes. Moreover, evaluate the risk of toxic metals release from the catalytic electrode during treatment process was investigated. The maximum degradation efficiency of 99.8, 100, and 100% for FT, TF, and CT was found under the optimal condition of FT, TF, and CT concentration 15.0 mg L-1, pH 7.0, current density 7.0 mA cm-2, and electrolysis time of 120 min. The Bi-PbO2, PbO2, and SnO2-Sb2O3 electrodes revealed the oxygen evolution potential of 2.089, 1.983, 1.914 V, and the service lifetime of 82, 144, and 323 h, respectively. The results showed that after 5.0 h of electrolysis, none of the heavy metals such as Bi, Pb, Sb, Sn, and Ti were detected in the treated solution.
Collapse
Affiliation(s)
- Maryam Dolatabadi
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Mostafa Pournamdari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asghar Ebrahimi
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Environmental Science and Technology Research Center, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeid Ahmadzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Meng Z, Yan S, Sun W, Yan J, Teng M, Jia M, Tian S, Zhou Z, Zhu W. Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131310. [PMID: 37003002 DOI: 10.1016/j.jhazmat.2023.131310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
As the most commonly used organochlorine pesticide nowadays, chlorothalonil (CHI), is ubiquitous in a natural environment and poses many adverse effects to organisms. Unfortunately, the toxicity mechanisms of CHI have not been clarified yet. This study found that the CHI based on ADI level could induce obesity in mice. In addition, CHI could induce an imbalance in the gut microbiota of mice. Furthermore, the results of the antibiotic treatment and gut microbiota transplantation experiments showed that the CHI could induce obesity in mice in a gut microbiota-dependent manner. Based on the results of targeted metabolomics and gene expression analysis, CHI could disturb the bile acids (BAs) metabolism of mice, causing the inhibition of the signal response of BAs receptor FXR and leading to glycolipid metabolism disorders in liver and epiWAT of mice. The administration of FXR agonist GW4064 and CDCA could significantly improve the CHI-induced obesity in mice. In conclusion, CHI was found to induce obesity in mice by regulating the gut microbiota and BAs metabolism via the FXR signaling pathway. This study provides evidence linking the gut microbiota and pesticides exposure with the progression of obesity, demonstrating the key role of gut microbiota in the toxic effects of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Dolatabadi M, Ehrampoush MH, Pournamdari M, Ebrahimi AA, Fallahzadeh H, Ahmadzadeh S. Enhanced electrocatalytic elimination of fenitrothion, trifluralin, and chlorothalonil from groundwater and industrial wastewater using modified Cu-PbO2 electrode. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Alginate Oligosaccharides Repair Liver Injury by Improving Anti-Inflammatory Capacity in a Busulfan-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24043097. [PMID: 36834506 PMCID: PMC9967464 DOI: 10.3390/ijms24043097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Liver diseases are associated with many factors, including medicines and alcoholics, which have become a global problem. It is crucial to overcome this problem. Liver diseases always come with inflammatory complications, which might be a potential target to deal with this issue. Alginate oligosaccharides (AOS) have been demonstrated to have many beneficial effects, especially anti-inflammation. In this study, 40 mg/kg body weight (BW) of busulfan was intraperitoneally injected once, and then the mice were dosed with ddH2O or AOS 10 mg/kg BW every day by oral gavage for five weeks. We investigated AOS as a potential no-side-effect and low-cost therapy for liver diseases. For the first time, we discovered that AOS 10 mg/kg recovered liver injury by decreasing the inflammation-related factors. Moreover, AOS 10 mg/kg could improve the blood metabolites related to immune and anti-tumor effects, and thus, ameliorated impaired liver function. The results indicate that AOS may be a potential therapy to deal with liver damage, especially in inflammatory conditions.
Collapse
|
8
|
Shan G, Zhu M, Zhang D, Shi T, Song J, Li QX, Hua R. Effects of plant morphology, vitamin C, and other co-present pesticides on the deposition, dissipation, and metabolism of chlorothalonil in pakchoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84762-84772. [PMID: 35789467 DOI: 10.1007/s11356-022-21405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Pesticide residues have been a focus of attention of food safety. Different varietal pakchoi plants grown in open fields were studied to understand effects of morphology, leaf wax content, and vitamin C on the deposition, dissipation, and metabolism of chlorothalonil. The loose pakchoi plants and flat leaves were conducive to pesticide deposition, but not plants with erect leaves. Chlorothalonil on nine varieties of pakchoi dissipated in the first-order kinetic with T1/2 s of 1.4 ~ 2.0 days. Vitamin C in pakchoi could promote the dissipation of chlorothalonil. Carbendazim could significantly promote the dissipation of chlorothalonil on pakchoi. Interestingly, four metabolites of chlorothalonil were identified in the pakchoi and the metabolic pathway was predicted by DFT calculations. The risk assessment showed that pakchoi were safe for consumption after 10 days of application of the recommended dose. This work provides important information for the understanding of deposition, dissipation, and metabolism of chlorothalonil in pakchoi.
Collapse
Affiliation(s)
- Guolei Shan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Jialong Song
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
9
|
Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice. Int J Mol Sci 2022; 23:ijms23147525. [PMID: 35886873 PMCID: PMC9317375 DOI: 10.3390/ijms23147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Female infertility has a multifactorial origin, and exposure to contaminants, including pesticides, with endocrine-disrupting properties is considered to be involved in this reproductive disorder, especially when it occurs during early life. Pesticides are present in various facets of the environment, and consumers are exposed to a combination of multiple pesticide residues through food intake. The consequences of such exposure with respect to female fertility are not well known. Therefore, we aimed to assess the impact of pre- and postnatal dietary exposure to a pesticide mixture on folliculogenesis, a crucial process in female reproduction. Mice were exposed to the acceptable daily intake levels of six pesticides in a mixture (boscalid, captan, chlorpyrifos, thiacloprid, thiophanate and ziram) from foetal development until 8 weeks old. Female offspring presented with decreased body weight at weaning, which was maintained at 8 weeks old. This was accompanied by an abnormal ovarian ultrastructure, a drastic decrease in the number of corpora lutea and progesterone levels and an increase in ovary cell proliferation. In conclusion, this study shows that this pesticide mixture that can be commonly found in fruits in Europe, causing endocrine disruption in female mice with pre- and postnatal exposure by disturbing folliculogenesis, mainly in the luteinisation process.
Collapse
|
10
|
Wu G, Li W, Du W, Yue A, Zhao J, Liu D. In-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Tao H, Bao Z, Fu Z, Jin Y. Chlorothalonil induces the intestinal epithelial barrier dysfunction in Caco-2 cell-based in vitro monolayer model by activating MAPK pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1459-1468. [PMID: 34549778 DOI: 10.1093/abbs/gmab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread use of chlorothalonil (CTL) has caused environmental residues and food contamination. Although the intestinal epithelial barrier (IEB) is directly involved in the metabolism and transportation of various exogenous compounds, there are few studies on the toxic effects of these compounds on the structure and function of IEB. The disassembly of tight junction (TJ) is a major cause of intestinal barrier dysfunction under exogenous compounds intake, but the precise mechanisms are not well understood. Here, we used Caco-2 cell monolayers as an in vitro model of human IEB to evaluate the toxicity of CTL exposure on the structure and function of IEB. Results showed that CTL exposure increased the paracellular permeability of the monolayers and downregulated mRNA levels of the TJ genes (ZO-1, OCLN, and CLDN1), polarity marker gene (SI), and anti-apoptosis gene (BCL-2) but upregulated the mRNA levels of apoptosis-related genes, including BAD, BAX, CASP3, and CASP8. Western blot analysis and immunofluorescence assay results showed the decreased levels and disrupted distribution of TJ protein network, including ZO-1 and CLDN1 in CTL-exposed IEB. In addition, the accumulation of intracellular reactive oxygen species, decreased mitochondrial membrane potential, and increased active CASP3 expression were observed in treated IEB. The result of TUNEL assay further confirmed the occurrence of cell apoptosis after CTL exposure. In addition, the phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38, was increased in CTL-exposed IEB. In summary, our results demonstrated that CTL exposure induced IEB dysfunction in Caco-2 cell monolayers by activating the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
12
|
Moo-Muñoz AJ, Azorín-Vega EP, Ramírez-Durán N, Moreno-Pérez PA. Evaluation of the cytotoxic and genotoxic potential of the captan-based fungicides, chlorothalonil-based fungicides and methyl thiophanate-based fungicides in human fibroblasts BJ. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:877-883. [PMID: 34486949 DOI: 10.1080/03601234.2021.1972721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objectives of this study were to examine cytotoxic and genotoxic damage in human BJ fibroblasts caused by three pesticides used worldwide by trypan blue dye exclusion assays and to measure the relative level of phosphorylated histone H2A.X by flow cytometry at different concentrations. Captan-based fungicide and methyl thiophanate-based fungicide (100 and 1000 µΜ) showed immediate cytotoxic effects; furthermore, after 24 h, captan-based fungicide, chlorothalonil-based fungicide and methyl thiophanate-based fungicide caused cytotoxic effects in the concentration ranges of 40-100 µM, 30-100 µM and 150-1000 µM, respectively. All fungicides generated DNA damage in the treated cells by activating ATM and H2A.X sensor proteins. The three fungicides tested generated DNA double-stranded breaks and showed cytotoxicity at concentrations 33, 34, and 5 times lower (captan, chlorothalonil and thiophanate-methyl respectively) than those used in the field, as recommended by the manufacturers.
Collapse
Affiliation(s)
- Andy J Moo-Muñoz
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Erika P Azorín-Vega
- National Radiopharmaceutical Research and Development Laboratory, National Institute for Nuclear Research, La Marquesa-Ocoyoacac, State of Mexico
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Pablo Antonio Moreno-Pérez
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| |
Collapse
|
13
|
Wang Y, Jin C, Wang D, Zhou J, Yang G, Shao K, Wang Q, Jin Y. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124639. [PMID: 33246813 DOI: 10.1016/j.jhazmat.2020.124639] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CHL) and procymidone (PRO) are fungicides that exhibit low toxicity and are widely used in many countries. And both fungicides are frequently detected in the food chain. However, the health risk posed by these fungicides is still unclear. Here, 8-week-old male C57BL/6 mice were orally treated with CHL (10, 50 mg/kg/day), PRO (20, 100 mg/kg/day) and CHL+PRO (5+10, 25+50 mg/kg/day) by dietary supplementation for 10 weeks. Hepatic pathological analysis showed that exposure to CHL, PRO and CHL+PRO could cause liver injury. The glucose, triglyceride (TG) levels and the related gene expression to glucolipid metabolism changed significantly. The significantly reduced acylcarnitine levels demonstrated that CHL, PRO and CHL+PRO exposure inhibited fatty acids (FAs) β-oxidation. In addition, CHL and PRO altered the structure of the gut microbiota and destroyed the integrity of the intestinal barrier function. In particular, AF12, Odoribacter, Prevotella and Lactobacillus were highly correlated with carnitine. The results showed that CHL, PRO and CHL+PRO exposure might inhibit FAs β-oxidation by decreasing cystic fibrosis transmembrane conductance regulator (CFTR)-mediated ion transport, indicating that these fungicides disturbed intestinal barrier function associated with glucolipid metabolism disorder. Here, the data also indicated that there was an additive effect between CHL and PRO in mice.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiajie Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
14
|
Roy N, Mascolo E, Lazzaretti C, Paradiso E, D’Alessandro S, Zaręba K, Simoni M, Casarini L. Endocrine Disruption of the Follicle-Stimulating Hormone Receptor Signaling During the Human Antral Follicle Growth. Front Endocrinol (Lausanne) 2021; 12:791763. [PMID: 34956099 PMCID: PMC8692709 DOI: 10.3389/fendo.2021.791763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
An increasing number of pollutants with endocrine disrupting potential are accumulating in the environment, increasing the exposure risk for humans. Several of them are known or suspected to interfere with endocrine signals, impairing reproductive functions. Follicle-stimulating hormone (FSH) is a glycoprotein playing an essential role in supporting antral follicle maturation and may be a target of disrupting chemicals (EDs) likely impacting female fertility. EDs may interfere with FSH-mediated signals at different levels, since they may modulate the mRNA or protein levels of both the hormone and its receptor (FSHR), perturb the functioning of partner membrane molecules, modify intracellular signal transduction pathways and gene expression. In vitro studies and animal models provided results helpful to understand ED modes of action and suggest that they could effectively play a role as molecules interfering with the female reproductive system. However, most of these data are potentially subjected to experimental limitations and need to be confirmed by long-term observations in human.
Collapse
Affiliation(s)
- Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Ospedale Civile Sant’Agostino-Estense, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini,
| |
Collapse
|
15
|
Li X, Yao Y, Wang S, Xu S. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 107:427-434. [PMID: 33186708 DOI: 10.1016/j.fsi.2020.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CT) is a commonly used fungicide and its excessive application seriously threatens aquatic life and human health. Resveratrol (RSV) is a natural polyphenol and can be used as a therapeutic and preventive agent for the treatment of various diseases. To explore the toxic mechanism of CT exposure on fish kidney cell, as well as the alleviation effect of RSV, we established CT poisoning and/or RSV treatment fish kidney cell models. Ctenopharyngodon idellus kidney (CIK) cell line was treated with CT (5 μg/L) and/or RSV (10 μM) for 48 h. The results showed that CT exposure activated cytochromeP450s (CYPs) including CYP1A1, CYP1B1 and CYP1C, caused malondialdehyde (MDA) accumulation, inhibited glutathione (GSH) levels and glutathione peroxidase (GPX) activities, increased the expression of miR-15a and downregulated BCL2 and TNFα-induced protein 3 (TNFAIP3, A20), triggered mitochondrial pathway mediated apoptosis and receptor interacting serine/threonine kinase (RIP)-dependent necroptosis in CIK cells. However, cell death under CT exposure could be relieved by RSV treatment through inhibiting the expression of CYP1 family genes and restoring miR-15a/BCL2-A20 axis disorders. Overall, we conclude that RSV could relieve CT-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in CIK cells. These results enrich the toxicological mechanisms of the CT and confirm that RSV can be used as a potential antidote for CT poisoning.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Barbasz A, Kreczmer B, Skórka M, Czyżowska A. Toxicity of pesticides toward human immune cells U-937 and HL-60. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:719-725. [PMID: 32538258 DOI: 10.1080/03601234.2020.1777059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The industrialization of the agricultural sector has significantly increased the use of chemicals such as pesticides. Therefore, exposure to them is unavoidable, which makes it necessary to assess their safety for humans at actual exposure doses. This paper aims to determine toxicity of three types of pesticides toward human immune cells (HL-60 and U-937): glyphosate (GLY), deltamethrin (DEL), and chlorothalonil (CHL). Cell viability, membrane integrity, inflammation induction, and antioxidant activity were evaluated to determine differences in cellular response to the tested plant protection agents. In experimental models, all tested substances caused increased mortality of cells after only 24 h. Cell membrane damage was recorded under DEL and CHL influences. The largest disintegration of the cell membrane was due to the action of 100 μg/mL DEL for U-937 and CHL at 1 μg/mL for HL-60. GLY at a concentration of 3,600 μg/mL caused significant peroxidation of U-937 cells' lipids. CHL-induced inflammation in both types of cells tested. DEL and GLY also induced antioxidant activity in cells. These results lead to the conclusion that the tested pesticides act cytotoxically to the cells of the human immune system in doses to which both farmers and consumers are exposed.
Collapse
Affiliation(s)
- Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| | - Barbara Kreczmer
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| | - Magdalena Skórka
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| | | |
Collapse
|
17
|
Li H, Zhang P, Zhao Y, Zhang H. Low doses of carbendazim and chlorothalonil synergized to impair mouse spermatogenesis through epigenetic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109908. [PMID: 31706243 DOI: 10.1016/j.ecoenv.2019.109908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Pesticides have been extensively produced and used to help the agricultural production which leads to the contamination of the environment, soil, groundwater sources, and even foodstuffs. Fungicides carbendazim (CBZ) and chlorothalonil (Chl) are widely applied in agriculture and other aspects. CBZ or Chl have been reported to disrupt spermatogenesis and decrease semen quality. However, it is not understood the effects of pubertal exposure to low doses of CBZ and Chl together, and the underlying mechanisms. Therefore, the aim of current investigation was to explore the negative impacts of pubertal exposure to low doses of CBZ and Chl together on spermatogenesis and the role of epigenetic modifications in the process. We demonstrated that CBZ and Chl together synergize to decrease sperm motility in vitro (CBZ 1.0 + Chl 0.1, CBZ 10.0 + CHl 1.0, CBZ 100.0 + Chl 10 μM in incubation medium for 24 h) and sperm concentration and motility in vivo with ICR mice (CBZ 0.1 + Chl 0.1, CBZ 1.0 + CHl 1.0, CBZ 10.0 + Chl 10 mg/kg body weight; oral gavage for five weeks). CBZ + Chl significantly increase reactive oxygen species (ROS) and apoptosis by the increase in the protein level of caspase 8 in vitro. Moreover, CBZ + Chl synergized to disrupt mouse spermatogenesis with the disturbance in sperm production proteins and sperm proteins (VASA, A-Myb, STK31, AR, Acrosin). CBZ + Chl synergized to decrease the protein level of estrogen receptor alpha and the protein level of DNA methylation marker 5 mC in Leydig cells, and to increase the protein levels of histone methylation marker H3K9 and the methylation enzyme G9a in germ cells. Therefore, greater attention should be paid to the use of CBZ and Chl as pesticides to minimise their adverse impacts on spermatogenesis.
Collapse
Affiliation(s)
- Huatao Li
- College of Veterinary Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Pengfei Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
18
|
Weis GCC, Assmann CE, Cadoná FC, Bonadiman BDSR, Alves ADO, Machado AK, Duarte MMMF, da Cruz IBM, Costabeber IH. Immunomodulatory effect of mancozeb, chlorothalonil, and thiophanate methyl pesticides on macrophage cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109420. [PMID: 31299472 DOI: 10.1016/j.ecoenv.2019.109420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Mancozeb (MZ), chlorothalonil (CT), and thiophanate methyl (TM) are pesticides commonly used in agriculture due to their efficacy, low acute toxicity to mammals, and short environmental persistence. Although the toxic effects of these pesticides have been previously reported, studies regarding their influence on the immune system are limited. As such, this study focused on the immunomodulatory effect of MZ, CT, and TM pesticides on macrophage cells. RAW 264.7 cells were exposed to a range of concentrations (0.1-100 μg/mL) of these pesticides. CT exposure promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) levels. The MTT and ds-DNA assay results demonstrated that MZ, CT, and TM exposure induced macrophage proliferation. Moreover, MZ, CT, and TM promoted cell cycle arrest at S phase, strongly suggesting macrophage proliferation. The levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and caspases (caspase 1, 3, and 8) in macrophages exposed to MZ, CT, and TM pesticides increased, whereas the anti-inflammatory cytokine levels decreased. These results suggest that MZ, CT, and TM exert an immunomodulatory effect on the immune system, inducing macrophage activation and enhancing the inflammatory response.
Collapse
Affiliation(s)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | | - Audrei de Oliveira Alves
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|