1
|
Zhang B, Li H, Qi F, Yu Q, Jiang H, Lin B, Dong H, Li H, Yu J. T-2 toxin induces chondrocyte extracellular matrix degradation by regulating the METTL3-mediated Ctsk m6A modification. Int Immunopharmacol 2024; 143:113390. [PMID: 39426235 DOI: 10.1016/j.intimp.2024.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
T-2 toxin is a major cause of Kashin-Beck disease (KBD), which is characterised by cartilage damage. N6-adenosine-methyltransferase-like 3 (METTL3) regulates cartilage injury; however, its role in T-2 toxin-induced cartilage injury remains elusive. Herein, we investigated the involvement of METTL3-mediated m6A modification in T-2 toxin-induced cartilage damage. METTL3-mediated m6A methylation levels were correlated with cartilage extracellular matrix (ECM) degradation, which was exacerbated following METTL3 silencing. Cathepsin K (Ctsk) was identified as a downstream target of METTL3 using m6A-methylated RNA immunoprecipitation(MeRIP)sequencing and RNA sequencing. Silencing Ctsk aggravated HT-2 toxin-induced ECM degradation. Increasing the m6A methylation levels in vivo via dietary methionine supplementation mitigated cartilage damage. In summary, HT-2 toxin induced cartilage ECM degradation by regulating the METTL3-mediated m6A modification of Ctsk. These findings highlight the METTL3/m6A/Ctsk axis as a potential therapeutic target for the treatment of KBD and other cartilage-associated diseases.
Collapse
Affiliation(s)
- Bing Zhang
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China; School of Public Health, Beihua University, Jilin 132013, Jilin, China
| | - Haonan Li
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Fang Qi
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qian Yu
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hong Jiang
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Buyi Lin
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hexuan Dong
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China
| | - Hongzhi Li
- School of Basic Medicine, Beihua University, Jilin 132013, Jilin, China.
| | - Jun Yu
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
3
|
Cao Y, Shan Y, Wang G, Wu Z, Wang H, Wu S, Yin Z, Wei J, Bao W. Integrated of multi-omics and molecular docking reveal PHGDH, PSAT1 and PSPH in the serine synthetic pathway as potential targets of T-2 toxin exposure in pig intestinal tract. Int J Biol Macromol 2023; 253:126647. [PMID: 37678681 DOI: 10.1016/j.ijbiomac.2023.126647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
T-2 toxin (T-2) with a molecular weight of 466.52 g/mol is an inevitable mycotoxin in food products and feeds, posing a significant threat to human and animal health. However, the underlying molecular mechanisms of the cytotoxic effects of T-2 exposure on porcine intestinal epithelial cells (IPEC-J2) remain unclear. Here, we investigated the cytotoxic effects of T-2 exposure on IPEC-J2 through the detection of cell viability, cell morphology, mitochondrial membrane potential, ROS, apoptosis and autophagy. Further transcriptomic and proteomic analyses of IPEC-J2 upon T-2 exposure were performed by using RNA-seq and TMT techniques. A total of 546 differential expressed genes (DEGs) and 269 differentially expressed proteins (DEPs) were detected. Among these, 24 common DEGs/DEPs were involved in IPEC-J2 upon T-2 exposure. Interestingly, molecular docking analysis revealed potential interactions between T-2 and three key enzymes (PHGDP, PSAT1, and PSPH) in the serine biosynthesis pathway. Besides, further experimental showed that PSAT1 knockdown exacerbated T-2-induced oxidative damage. Together, our findings indicated that the serine biosynthesis pathway including PHGDP, PSAT1, PSPH genes probably acts critical roles in the regulation of T-2-induced cell damage. This study provided new insights into the global molecular effects of T-2 exposure and identified the serine biosynthesis pathway as molecular targets and potential treatment strategies against T-2.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit 48202, United States
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Li K, Wang L, Yu D, Yan Z, Liu N, Wu A. Cellobiose inhibits the release of deoxynivalenol from transformed deoxynivalenol-3-glucoside from Lactiplantibacillus plantarum. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100077. [PMID: 35415700 PMCID: PMC8991972 DOI: 10.1016/j.fochms.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
The masked mycotoxin deoxynivalenol-3-glucoside (D3G) has been reported to be a detoxification product in plants, but can be hydrolyzed into its toxic precursor, deoxynivalenol (DON). Herein, we reported that Lactiplantibacillus plantarum (L. plantarum) NMM.1, isolated from Inner Mongolia raw milk, can efficiently transform D3G to DON in a short time. The global transcriptome microarray profiling of L. plantarum NMM.1 revealed differential expression of genes related to the phosphotransferase system (PTS) when D3G was used as the sole carbohydrate source. By adding an exogenous carbon source, we found that cellobiose efficiently inhibited the conversion of D3G into its precursor toxin by L. plantarum NMM.1. Overall, substrate depletion studies, transcriptome analysis, and carbohydrate intervention studies of L. plantarum NMM.1 suggested that cellobiose could be used to prevent the transformation of D3G into its free native DON by L. plantarum, thereby preventing harm to the human body.
Collapse
Affiliation(s)
- Kailin Li
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Wang H, Zhou Y, Xu C, Cao Y, Xiao Y, Cai D, Uemoto Y, Wu S, Bao W. Genome-wide transcriptional profiling and functional analysis reveal miR-330-MAPK15 axis involving in cellular responses to deoxynivalenol exposure. CHEMOSPHERE 2022; 298:134199. [PMID: 35278444 DOI: 10.1016/j.chemosphere.2022.134199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) is one of the mycotoxins that is toxic to agricultural environment, which poses high risks to human and farm animal health. Noncoding RNAs have been shown to be crucial regulators of toxicological processes and as promising biomarkers for toxicity monitoring and prevention of mycotoxin contamination. Herein, we characterized genome-wide transcriptional profiling of porcine intestinal epithelial cells upon DON exposure and illustrated a subset of miRNAs and lncRNAs involved in the cellular processes by targeting genes associated with stress responses. A total of 110 differential expression miRNAs and 143 differential expression lncRNAs were identified between the DON exposure and control cell samples. Interactive network analysis showed that miR-330 was one hub noncoding RNA, expression of which was significantly increased upon DON exposure. Functional enrichment analysis indicated that the genes involved in the networks were mainly enriched in the terms of plasma membrane bounded cell projection assembly, mRNA processing, and regulation of mitochondrion organization. Further functional analysis revealed that high expression of miR-330 inhibits the reactive oxygen species production, cell apoptosis, and autophagic flux in cells upon DON exposure. Luciferase assay further indicated that miR-330 could directly target MAPK15. Knockdown of MAPK15 resulted in decreased reactive oxygen species level and cell apoptosis induced by DON, indicating the existence of miR-330-MAPK15 regulatory axis in regulating DON toxicity. Our work shed novel insights into the mode of action of DON at cellular level and indicated the potential of miR-330 as a biomarker for toxicity monitoring of DON contamination, which contributes to the development of effective biomonitoring and prevention strategies to reduce the toxicological effects of DON.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Wang H, Zhang M, Zhang Y, Liu Y, Wang M, Liu Y, Liao Y, Li Z, Feng Y, Chen J. The decreased expression of integrin αv is involved in T-2 toxin-induced extracellular matrix degradation in chondrocytes. Toxicon 2021; 199:109-116. [PMID: 34139256 DOI: 10.1016/j.toxicon.2021.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
T-2 toxin is one of the most toxic and common mycotoxins in grains and related products. It is considered a risk factor for Kashin-Beck disease (KBD), an endemic osteoarthritis. Both in vitro and in vivo studies have shown that T-2 toxin can cause extracellular matrix degradation; however, the underlying mechanism is unclear. Integrins have been found to regulate the expression of matrix metalloproteinases (MMPs), the 'scissors' of matrix proteins. In this study, we investigated whether integrin αv played a role in T-2 toxin-induced matrix degradation. Results from our study showed that the expression of integrin αv in the cartilage of rats fed T-2 toxin was reduced compared to that in rats fed a normal diet. Integrin αv was downregulated in T-2 toxin-treated C28/I2 chondrocytes, and selenium was found to have a protective effect. The expression of MMP-1, -3, -10, and -13 increased whereas that of type II collagen (Col II) protein decreased in C28/I2 cells treated with an integrin αv inhibitor. In conclusion, T-2 toxin can downregulate integrin αv expression in chondrocytes. Reduced integrin αv signalling could induce the release of MMPs, leading to matrix degradation.
Collapse
Affiliation(s)
- Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Ying Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Mengying Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yue Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yucheng Liao
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Zhengzheng Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yiping Feng
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Karmanov AP, Kanarsky AV, Kocheva LS, Belyy VA, Semenov EI, Rachkova NG, Bogdanovich NI, Pokryshkin SA. Chemical structure and polymer properties of wheat and cabbage lignins – Valuable biopolymers for biomedical applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
9
|
Comment on 'Comparison of the toxic mechanism of T-2 toxin and deoxynivalenol on human chondrocytes by microarray and bioinformatics analysis'. Toxicol Lett 2020; 327:1. [PMID: 32217143 DOI: 10.1016/j.toxlet.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022]
|
10
|
Comparative Transcriptome Analysis Reveals the Potential Cardiovascular Protective Targets of the Thyroid Hormone Metabolite 3-Iodothyronamine (3-T1AM). BIOMED RESEARCH INTERNATIONAL 2020; 2020:1302453. [PMID: 32685439 PMCID: PMC7322601 DOI: 10.1155/2020/1302453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) is rapidly emerging as a promising compound in decreasing the heart rate and lowering the cardiac output. The aim of our study was to fully understand the molecular mechanism of 3-T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Materials and Methods In our study, we utilized RNA-Seq to characterize the gene expression in H9C2 cells after 3-T1AM treatment. Comparative transcriptome analysis, including gene ontology, signaling pathways, disease connectivity analysis, and protein-protein interaction networks (PPI), was presented to find the critical gene function, hub genes, and related pathways. Results A total of 1494 differently expressed genes (DEGs) were identified (192 upregulated and 1302 downregulated genes) in H9C2 cells for 3-T1AM treatment. Of these, 90 genes were associated with cardiovascular diseases. The PPI analysis indicated that 5 hub genes might be the targets of 3-T1AM. Subsequently, eight DEGs characterized using RNA-Seq were confirmed by RT-qPCR assays. Conclusions Our study provides a comprehensive analysis of 3-T1AM on H9C2 cells and delineates a new insight into the therapeutic intervention of 3-T1AM for the cardiovascular diseases.
Collapse
|
11
|
Zhou H, Hu B, Liu X. Thyroid Hormone Metabolite 3-Iodothyronamine (T1AM) Alleviates Hypoxia/Reoxygenation-Induced Cardiac Myocyte Apoptosis via Akt/FoxO1 Pathway. Med Sci Monit 2020; 26:e923195. [PMID: 32162616 PMCID: PMC7081925 DOI: 10.12659/msm.923195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (T1AM) is rapidly emerging as promising compound of decreasing heart rate and lowering cardiac output. The aim of our study was to fully understand the molecular mechanism of T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Material/Methods We developed an in vitro myocardial ischemia-reperfusion injury model of AC-16 cells by hypoxia-reoxygenation injury. Cell viability of AC-16 cells was detected using CCK-8 assay and apoptosis was detected by flow cytometry. RNA-seq was used to characterize the gene expression in H/R-induced AC-16 cells after T1AM treatment. The mRNA levels of FoxO1, PPARα, Akt, and GCK and the protein levels of PPARα, GCK, and components of the Akt/FoxO1 pathway were detected by qRT-PCR and Western blotting, respectively. Results Exogenous T1AM increased the H/R-induced AC-16 cell viability in a relatively low concentration. A total of 210 DEGs, including 142 upregulated and 68 downregulated genes, were determined in H/R-induced AC-16 cells treated with or without T1AM. A Venn diagram showed 135 common DEGs. The FoxO signaling pathway was identified via KEGG enrichment analysis of these 135 DEGs. Moreover, T1AM mediated hypometabolism and reduced the apoptosis of H/R-induced AC-16 cells via the Akt/FoxO1 pathway. Conclusions Exogenous T1AM protects against cell injury induced by H/R in AC-16 cells via regulation of the FoxO signaling pathway. Our results suggest that T1AM can play a preventive role in myocardial H/R injury and also provide new insight for clinical management of AMI patients.
Collapse
Affiliation(s)
- Haiyan Zhou
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Xingde Liu
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland).,Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|