1
|
Huang X, Wang H, Kong L, Chen Z, Zhang J, Zuo Y, Chen W. Microwave-assisted hydrothermal synthesis of highly dispersed cerium-zirconium solid solution on Ti 3C 2T x nanosheets as an efficient decontamination towards sulfur mustard simulants. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136203. [PMID: 39471616 DOI: 10.1016/j.jhazmat.2024.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
The microwave-assisted hydrothermal method has facilitated the straightforward and efficient production of nanoscale CexZr1-xO2/Ti3C2Tx composites. This technique has greatly shortened the synthesis time several hours required by conventional hydrothermal method to merely 10 min. Due to the unique mechanism of microwave-hydrothermal synthesis, composites with excellent crystallinity, uniform particle size, and superior degradation capabilities can be obtained without calcination. Our investigation systematically explores the influence of various factors including mineralizer concentration, dispersant types, synthesis duration, cerium-to-zirconium ratio, as well as MXene content on the material properties. Optimal degradation of 2-chloroethyl ethyl sulfide (2-CEES), sulfur mustard simulants, is achieved using PEG1000 as the dispersant, a cerium-to-zirconium ratio of 1:2, along with 15 mL of MXene, resulting in a remarkably short half-life of only 6.5 min. Furthermore, it is confirmed that the incorporation of cerium atoms into ZrO2 lattice, forming a solid solution that is deposited onto the interlayer and surface of Ti3C2Tx nanosheets, with the composite particles measuring approximately 5.01 nm. The reduced size and increased specific surface area, coupled with the synergistic effects of oxygen vacancies and acid-base sites, ultimately contribute to the hydrolysis and elimination reactions occurring on 2-CEES. This research offers fresh perspectives on the development of novel materials for the degradation of chemical warfare agents.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zihao Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
2
|
Franken J, Mikler J. Reactive skin decontamination lotion (RSDL) safety with clinical antiseptics and hemostatic agents. Toxicol Lett 2024; 395:11-16. [PMID: 38484828 DOI: 10.1016/j.toxlet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
Reactive skin decontamination lotion (RSDL) is a Health Canada approved product used by the Canadian Armed Forces for removal and inactivation of toxic chemicals on skin. Although it is considered very safe when used as directed, questions have been raised regarding whether topical RSDL in the medical setting will react exothermically with antiseptic compounds on the casualty's epidermis that could result in thermal burns. Benchtop experiments were conducted to investigate reactivity of RSDL with various antiseptic compounds or hemostatic agents. Temperature changes were closely monitored in three different volume ratios, 1:10, 1:1, and 10:1 over a time course of 16 minutes. Chlorine based bleaches versus RSDL were included as a positive control and were the only combination that exhibited a significant exothermic reaction capable of causing minor thermal burns. RSDL was also evaluated with antiseptic solution applied to swine epidermal tissue without observation of visual irritation; then in lacerated skeletal muscle tissue which resulted in no measured temperature change. The conclusion of this study is that antiseptics and hemostatic agents can be used as required on a patient decontaminated with RSDL as no exothermic reaction will occur.
Collapse
Affiliation(s)
- Jessica Franken
- Defence Research and Development Canada - Suffield Research Centre, Department of National Defence, Suffield, Alberta, Canada.
| | - John Mikler
- Defence Research and Development Canada - Suffield Research Centre, Department of National Defence, Suffield, Alberta, Canada
| |
Collapse
|
3
|
Huang X, Kong L, Chen W, Wang H, Zhang J, Gao Z, Xin Y, Xu W, Zuo Y. Catalytic activation of peracetic acid for pelargonic acid vanillylamide degradation by Co 3O 4 nanoparticles in-situ anchored carbon-coated MXene nanosheets: Performance and mechanism insight. J Colloid Interface Sci 2024; 657:1003-1015. [PMID: 38141470 DOI: 10.1016/j.jcis.2023.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/25/2023]
Abstract
Pelargonic acid vanillylamide (PAVA), a capsaicin-type dacryagogue agent utilized for counter-terrorism and riot control, possesses a low stimulus threshold. This characteristic can lead to environmental contamination following its application and may easily result in secondary stimulation to personnel. Cobalt-doped Ti3C2-MXene nanosheets (Co3O4/Ti3C2@C) were synthesized for the purpose of activating peracetic acid (PAA) and degrading PAVA. A carbon layer was coated on the surface of Ti3C2-MXene nanosheets to address the challenge of poor oxygen resistance in MXenes, thus preventing a significant decline in surface reactivity. The BET surface area of Co3O4/Ti3C2@C was expanded to 149.6 m2/g, significantly exceeding that of Ti3C2 (13.0 m2/g) and Co3O4 (56.4 m2/g). With 0.5 mg/mL of Co3O4/Ti3C2@C and 0.35 mM of PAA, 100 mg/L of PAVA was completely degraded within 60 min. The augmented BET surface area and the presence of more active sites confer remarkable PAA activation and catalytic degradation properties toward PAVA. Parameters such as initial pH, PAVA concentration, catalyst dosage, and PAA concentration on PAVA degradation were systematically assessed. Furthermore, the reusability and stability of the nanocomposite were substantiated through recycling tests. Radical quenching experiments and electron paramagnetic resonance analysis demonstrated the acetylperoxy radical (CH3CO3) as the primary species responsible for PAVA degradation. This research serves as an illustration of the utilization of MXene and transition metal activated PAA in wastewater treatment.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zhimeng Gao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yi Xin
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wencai Xu
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
4
|
Achanta S, Chintagari NR, Balakrishna S, Liu B, Jordt SE. Pharmacologic Inhibition of Transient Receptor Potential Ion Channel Ankyrin 1 Counteracts 2-Chlorobenzalmalononitrile Tear Gas Agent-Induced Cutaneous Injuries. J Pharmacol Exp Ther 2024; 388:613-623. [PMID: 38050077 PMCID: PMC10801748 DOI: 10.1124/jpet.123.001666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Deployment of the tear gas agent 2-chlorobenzalmalononitrile (CS) for riot control has significantly increased in recent years. The effects of CS have been believed to be transient and benign. However, CS induces severe pain, blepharospasm, lachrymation, airway obstruction, and skin blisters. Frequent injuries and hospitalizations have been reported after exposure. We have identified the sensory neuronal ion channel, transient receptor potential ankyrin 1 (TRPA1), as a key CS target resulting in acute irritation and pain and also as a mediator of neurogenic inflammation. Here, we examined the effects of pharmacologic TRPA1 inhibition on CS-induced cutaneous injury. We modeled CS-induced cutaneous injury by applying 10 μl CS agent [200 mM in dimethyl sulfoxide (DMSO)] to each side of the right ears of 8- to 9-week-old C57BL/6 male mice, whereas left ears were applied with solvent only (DMSO). The TRPA1 inhibitor HC-030031 or A-967079 was administered after CS exposure. CS exposure induced strong tissue swelling, plasma extravasation, and a dramatic increase in inflammatory cytokine levels in the mouse ear skin. We also showed that the effects of CS were not transient but caused persistent skin injuries. These injury parameters were reduced with TRPA1 inhibitor treatment. Further, we tested the pharmacologic activity of advanced TRPA1 antagonists in vitro. Our findings showed that TRPA1 is a crucial mediator of CS-induced nociception and tissue injury and that TRPA1 inhibitors are effective countermeasures that reduce key injury parameters when administered after exposure. Additional therapeutic efficacy studies with advanced TRPA1 antagonists and decontamination strategies are warranted. SIGNIFICANCE STATEMENT: 2-Chlorobenzalmalononitrile (CS) tear gas agent has been deployed as a crowd dispersion chemical agent in recent times. Exposure to CS tear gas agents has been believed to cause transient acute toxic effects that are minimal at most. Here we found that CS tear gas exposure causes both acute and persistent skin injuries and that treatment with transient receptor potential ion channel ankyrin 1 (TRPA1) antagonists ameliorated skin injuries.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Narendranath Reddy Chintagari
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Shrilatha Balakrishna
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Boyi Liu
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Sven-Eric Jordt
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| |
Collapse
|