1
|
Song C, Chen S, Bi Z, Wang L, Cao M, Zhou Z, Cao H, Chen M, Zhang J, Liang Y. Perfluorohexane sulfonate exposure caused multiple developmental abnormalities in early life of zebrafish. ENVIRONMENTAL RESEARCH 2025; 265:120461. [PMID: 39603589 DOI: 10.1016/j.envres.2024.120461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Perfluorohexane sulfonate (PFHxS) has been listed as a new persistent organic pollutant since 2022. Although the production and use of PFHxS are now restricted, it remains highly persistent in aquatic environments for decades. However, so far research about the toxic effects on early-life exposure of PFHxS and underlying mechanisms are still limited. In this study, we employed both wild type and specifically labeled transgenic zebrafish as model to investigate the developmental toxicity of PFHxS during early-stage exposure in zebrafish. A series of phenotypic and molecular indicators were analyzed at various time points between 24 h post-fertilization (hpf) and 7 days post-fertilization (dpf). Our data showed that the acute toxicity of PFHxS was much lower than PFOS, with a lethal concentration 50% of 508.11 ± 88.54 μM at 120 hpf. Low-dose PFHxS exposure significantly altered heart rates, blood flow, and swimming behavior in zebrafish larvae, suggesting potential cardiotoxicity and neurotoxicity of zebrafish. Data from transgenic zebrafish with specifically labeled hearts (CZ40) confirmed that PFHxS affects cardiovascular system development. PFHxS-induced changes in transgenic zebrafish with labeled liver and pancreas (CZ16) suggest that PFHxS may cause metabolic disorders and contribute to developmental defects. Gene expression analysis showed that PFHxS with potential estrogenic effect might also affect the gonadal development of zebrafish. Our study can offer an insight into the toxicity of PFHxS in aquatic environment and health risks of early-stage PFHxS exposure in humans.
Collapse
Affiliation(s)
- Chuxin Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyi Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zeyu Bi
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Minjie Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
2
|
Li Q, Zhang Y, Chen C, Lou J, Wang S, Hang JG, Nakayama SF, Kido T, Feng H, Sun XL, Shan J. Association Between Prenatal Exposure to Per- and Poly-Fluoroalkyl Substances From Electronic Waste Disassembly Areas and Steroid Hormones in Human Milk Samples. GEOHEALTH 2024; 8:e2024GH001142. [PMID: 39175507 PMCID: PMC11339319 DOI: 10.1029/2024gh001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), which are long-lasting environmental contaminants that are released into the environment during the e-waste disassembly process, pose a threat to human health. Human milk is a complex and dynamic mixture of endogenous and exogenous substances, including steroid hormones and PFAS. Therefore, in this study, we aimed to investigate the association between PFAS and steroid hormones in human milk from women living close to an e-waste disassembly area. In 2021, we collected milk samples from 150 mothers within 4 weeks of delivery and analyzed them via liquid chromatography-tandem mass spectrometry to determine the levels of 21 perfluorinated compounds and five steroid hormones (estrone, estriol, testosterone, progesterone, and androstenedione [A-dione]). We also performed multiple linear regression analysis to clarify the association between maternal PFAS exposure and steroid hormone concentrations. Our results indicated that PFOA and PFOS were positively associated with estrone (β, 0.23; 95% CI, 0.08-0.39) and A-dione (β, 0.186; 95% CI, 0.016-0.357) concentrations in human milk, respectively. Further, the average estimated daily intake of PFOA and PFOS were 36.5 ng/kg bw/day (range, 0.52-291.7 ng/kg bw/day) and 5.21 ng/kg bw/day (range, 0.26-32.3 ng/kg bw/day), respectively. Of concern, the PFAS intake of breastfeeding infants in the study area was higher than the recommended threshold. These findings suggested that prenatal exposure to PFAS from the e-waste disassembly process can influence steroid hormones levels in human milk. Increased efforts to mitigate mother and infant exposure to environmental pollutants are also required.
Collapse
Affiliation(s)
- Qiyao Li
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | - Yan Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Chen Chen
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | - Jianlin Lou
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | | | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Shoji F. Nakayama
- Japan Environment and Children's Study Programme OfficeNational Institute for Environmental StudiesTsukubaJapan
| | - Teruhiko Kido
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Hao Feng
- School of MedicineJiaxing UniversityJiaxingChina
| | - Xian Liang Sun
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Jiancong Shan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| |
Collapse
|
3
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Hallberg I, Persson S, Olovsson M, Moberg M, Ranefall P, Laskowski D, Damdimopoulou P, Sirard MA, Rüegg J, Sjunnesson YC. Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reprod Toxicol 2022; 109:19-30. [DOI: 10.1016/j.reprotox.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
5
|
Liu H, Hu W, Li X, Hu F, Xi Y, Su Z, Huang Y, Liu B, Zhang C. Do perfluoroalkyl substances aggravate the occurrence of obesity-associated glucolipid metabolic disease? ENVIRONMENTAL RESEARCH 2021; 202:111724. [PMID: 34293310 DOI: 10.1016/j.envres.2021.111724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Since 2016, more and more studies have been conducted to explore the combination of obesity and perfluoroalkyl substances (PFASs) exposure, and the results indicate that PFASs may be connected with the occurrence of obesity-associated glucolipid metabolic disease (GLMD). OBJECTIVES This article summarizes the epidemiological studies on PFASs and obesity-related GLMD, as well as relevant experimental evidence. RESULTS (i) Both obesity and PFASs exposure can cause disorder of glucose and lipid metabolism (GLM). (ii) Obesity is a pivotal factor in the high incidence of GLMD induce by PFASs. (iii) PFASs are aggravating the occurrence of obesity-associated GLMD [e.g., diabetes, cardiovascular disease (CVD), and liver disease]. CONCLUSION The paper fills the gaps among environmental chemistry/epidemiology/toxicology area research. More importantly, PFASs should be taken into account to explain the high-prevalence of obesity-related GLMD. FUTURE DIRECTION Three research programs are proposed to explore the synergistic mechanism of PFASs and obesity. In addition, three suggestions are recommended to solve the harm of PFASs pollutants to human beings.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Fangwen Hu
- Zhangjiajie College, Jishou University, Zhangjiajie, 427000, China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|