1
|
Vandekerkhove C, Bchini R, Dhalleine T, Kohler A, Deveau A, Pandharikar G, Besserer A, Sormani R, Darnet S, Morel-Rouhier M. Dissecting the mechanisms of copper-azole wood preservatives detoxification by ligninolytic fungi. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136934. [PMID: 39724714 DOI: 10.1016/j.jhazmat.2024.136934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Copper-azole based formulations have been widely used to protect wood timbers against fungal decay. While these treatments are efficient for wood protection, leaching of both copper and azoles into the environment has deleterious impact on soils and surface waters. No bioremediation process is currently available for disposable of these wood wastes. Exploiting the natural ability of certain fungi to tolerate these active compounds, we propose that some ligninolytic fungi could serve as effective biocatalysts for detoxifying copper-azole formulations. Using the white-rot fungus Phanerochaete chrysosporium as a model, we demonstrated that these fungi engage multiple strategies to counteract the antifungal effect of azoles present in the preservatives. These include the modulation of the lipids and sterols content, the maintenance of DNA integrity, detoxification of azoles by extracellular degradation likely through the Fenton chemistry, biosorption at the cell wall, efflux, and intracellular detoxification by the three-step detoxification pathway. By using comparative transcriptomics between a copper-azole formulation and a copper-quaternary ammonium formulation, we identified genes specifically involved in azole resistance and detoxification within this complex system. This opens new perspectives for managing azoles residues through mycoremediation processes.
Collapse
Affiliation(s)
| | - Raphael Bchini
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | | | | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | | - Arnaud Besserer
- Université de Lorraine, INRAE, LERMAB, Nancy F-54000, France
| | - Rodnay Sormani
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | - Sylvain Darnet
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | |
Collapse
|
2
|
Li W, Sun L, Yang X, Peng C, Hua R, Zhu M. Enantioselective effects of chiral profenofos on the conformation for human serum albumin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106159. [PMID: 39477612 DOI: 10.1016/j.pestbp.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/07/2024]
Abstract
Profenofos, as a typical chiral organophosphorus pesticide, can cause various environmental problems and even endanger human health when used in excess. The toxicity of chiral profenofos was investigated through multispectral analysis, molecular docking, and density functional theory (DFT), employing human serum albumin (HSA) as the model protein. Fluorescence titration and lifetime measurements demonstrated that the interaction between chiral profenofos and HSA involves static quenching. Chiral profenofos forms a 1:1 complex with HSA at site II (subdomain IIIA), primarily driven by hydrophobic interactions and hydrogen bonds. Notably, the binding efficacy diminishes as temperature increases. Spectroscopic analyses confirm that chiral profenofos alters the microenvironment and structure of HSA, with the R-enantiomer exerting a greater impact than the S-enantiomer. Consequently, the toxicological implications of the R-profenofos is significantly more pronounced. Investigating the molecular-level toxic effects of chiral pesticides enhances the thoroughness of pesticide assessments, aids in understanding their distribution, metabolism, and associated risks, and facilitates the development of mitigation strategies.
Collapse
Affiliation(s)
- Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
3
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Karaca M, Willenbockel CT, Tralau T, Bloch D, Marx-Stoelting P. Toxicokinetic and toxicodynamic mixture effects of plant protection products: A case study. Regul Toxicol Pharmacol 2023; 141:105400. [PMID: 37116736 DOI: 10.1016/j.yrtph.2023.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Authorisation of ready to use plant protection products (PPPs) usually relies on the testing of acute and local toxicity only. This is in stark contrast to the situation for active substances where the mandatory data set comprises a most comprehensive set of studies. While the combination of certain active ingredients and co-formulants may nevertheless result in increased toxicity of the final product such combinations have never been evaluated systematically for complex and long-term toxicological endpoints. We therefore investigated the effect of three frequently used co-formulants on the toxicokinetic and toxicodynamic of the representative active substance combination of tebuconazol (Teb) and prothioconazol (Pro) or of cypermethrin (Cpm) and piperonyl butoxide (Pip), respectively. With all four active substances being potential liver steatogens, cytotoxicity and triglyceride accumulation in HepaRG were used as primary endpoints. Concomitantly transcriptomics and biochemical studies were applied to interrogate for effects on gene expression or inhibition of CYP3A4 as key enzyme for functionalization. Some of the tested combinations clearly showed more than additive effects, partly due to CYP3A4 enzyme inhibition. Other effects comprised the modulation of the expression and activity of steatosis-related nuclear key receptors. Altogether, the findings highlight the need for a more systematic consideration of toxicodynamic and toxicokinetic mixture effects during assessment of PPPs.
Collapse
Affiliation(s)
- Mawien Karaca
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Christian Tobias Willenbockel
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany.
| |
Collapse
|
5
|
Zhu M, Pang X, Wang K, Sun L, Wang Y, Hua R, Shi C, Yang X. Enantioselective effect of chiral prothioconazole on the conformation of bovine serum albumin. Int J Biol Macromol 2023; 240:124541. [PMID: 37086758 DOI: 10.1016/j.ijbiomac.2023.124541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
As a typical chiral triazole fungicide, the enantioselective toxicity of prothioconazole to environmental organisms is of increasing concern. Herein, the binding mechanism of chiral PTCs to BSA was investigated by multi-spectral technique and molecular docking. Fluorescence titration and fluorescence lifetime experiments fully established that quenching BSA fluorescence by chiral PTCs is static quenching and could spontaneously bind to BSA. Hydrophobic interactions dominate the binding process of chiral PTCs to BSA. Differently, although both chiral PTCs and BSA have a primary binding site, the difference in chiral isomerism leads to a stronger binding ability of S-PTC than R-PTC. Both configurations of PTC can change the conformation of BSA and induce changes in the microenvironment around its amino acid residues, and the effect of S-PTC is more significant. Overall, S-PTC exhibited a more substantial effect on BSA structure relative to R-PTC. That is, S-PTC may lead to more potent potential toxicological effects on environmental organisms. This study provides a comprehensive assessment of the environmental behavior of chiral pesticides and their potential toxicity to environmental organisms at the molecular level and provides a theoretical basis for the screening of highly effective and biologically less toxic enantiomers of chiral pesticides.
Collapse
Affiliation(s)
- Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Kangquan Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Ce Shi
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
6
|
Kinetic Characteristics of Curcumin and Germacrone in Rat and Human Liver Microsomes: Involvement of CYP Enzymes. Molecules 2022; 27:molecules27144482. [PMID: 35889364 PMCID: PMC9317718 DOI: 10.3390/molecules27144482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Curcumin and germacrone, natural products present in the Zingiberaceae family of plants, have several biological properties. Among these properties, the anti-NSCLC cancer action is noteworthy. In this paper, kinetics of the two compounds in rat liver microsomes (RLMs), human liver microsomes (HLMs), and cytochrome P450 (CYP) enzymes (CYP3A4, 1A2, 2E1, and 2C19) in an NADPH-generating system in vitro were evaluated by UP-HPLC–MS/MS (ultrahigh-pressure liquid chromatography–tandem mass spectrometry). The contents of four cytochrome P450 (CYP) enzymes, adjusting by the compounds were detected using Western blotting in vitro and in vivo. The t1/2 of curcumin was 22.35 min in RLMs and 173.28 min in HLMs, while 18.02 and 16.37 min were gained for germacrone. The Vmax of curcumin in RLMs was about 4-fold in HLMs, meanwhile, the Vmax of germacrone in RLMs was similar to that of HLMs. The single enzyme t1/2 of curcumin was 38.51 min in CYP3A4, 301.4 min in 1A2, 69.31 min in 2E1, 63.01 min in 2C19; besides, as to the same enzymes, t1/2 of germacrone was 36.48 min, 86.64 min, 69.31 min, and 57.76 min. The dynamic curves were obtained by reasonable experimental design and the metabolism of curcumin and germacrone were selected in RLMs/HLMs. The selectivities in the two liver microsomes differed in degradation performance. These results meant that we should pay more attention to drugs in clinical medication–drug and drug–enzyme interactions.
Collapse
|