1
|
Liu J, Pan L, Wang S, Li Y, Wu Y, Luan J, Yang K. Predicting laboratory aspirin resistance in Chinese stroke patients using machine learning models by GP1BA polymorphism. Pharmacogenomics 2024:1-12. [PMID: 39440554 DOI: 10.1080/14622416.2024.2411939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
This study aims to use machine learning model to predict laboratory aspirin resistance (AR) in Chinese stroke patients by incorporating patient characteristics and single nucleotide polymorphisms of GP1BA and LTC4S. 2405 patients were analyzed to measure the Mutation frequency of GP1BA rs6065 and LTC4S rs730012. 112 patients with first-stroke arteriostenosis were prospectively enrolled to establish machine learning model. GP1BA rs6065 mutation frequency is 5.26% and LTC4S rs730012 is 14.78%. GP1BA rs6065 CT patients have more sensitivity to aspirin than CC genotype. Simple linear regression identified significant associations with age, smoking, HDL and GP1BA rs6065. Random forest (RF) and extreme gradient boosting (XGBoost) demonstrated predictive capabilities for AR. Findings suggest pre-identifying GP1BA rs6065 could optimize aspirin treatment, enabling personalized care and future research avenues.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Linkun Pan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Sheng Wang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yueran Li
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yilai Wu
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| |
Collapse
|
2
|
Wang X, Wu X, Ma W, Wang Q, Chen Y, Zhao X, Lu Y. Antimony exposure affects oocyte quality and early embryo development via excessive mitochondrial oxidation and dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117084. [PMID: 39305772 DOI: 10.1016/j.ecoenv.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024]
Abstract
Antimony (Sb) is a metalloid, widely presents in the environment and associates with human health. In this study, we aimed to decipher whether Sb exposure is harmful to female reproduction and explore the underlying mechanisms. The ICR mice were exposed to 0, 5, 10, and 20 mg/kg acetate potassium Sb tartrate trihydrate by intraperitoneal injection for 10 days, then mouse oocytes were collected for further analysis. We first found a significant decrease in the proportion of MII-stage oocytes obtained from supernumerary ovulation in the fallopian tubes and early embryo development under Sb treatment. Then a series of tests showed Sb affects oocyte maturation by damaging the cytoskeleton of microtubule and actin. Moreover, the abnormal distribution of cortical granules and their component Ovastacin in oocytes, combined with reduced expression levels of Juno, affected sperm-oocyte binding and led to fertilization failure. Based on the sequencing results and experimental validation, it was demonstrated that Sb exposure impairs mitochondrial distribution and membrane potential, elevated levels of mitochondrial superoxide, finally caused energy supply deficits. Mitochondrial damage in oocytes after Sb exposure results in the excessive oxidative stress and early apoptosis. Taken together, these data suggest that Sb exposure decreases oocyte quality and female fertilization ability by impairing mitochondrial function and redox perturbation.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Zhu H, Zhong X. Honokiol as an α-glucosidase inhibitor. Front Pharmacol 2024; 15:1425832. [PMID: 38962316 PMCID: PMC11220239 DOI: 10.3389/fphar.2024.1425832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Honokiol, a naturally occurring compound from Magnolia obovata Thunb., has many biological activities, but its anti-α-glucosidase activity is still unclear. Therefore, we determined its inhibitory effects against α-glucosidase. Activity assays showed that honokiol was a reversible mixed-type inhibitor of α-glucosidase, and its IC50 value was 317.11 ± 12.86 μM. Fluorescence results indicated that the binding of honokiol to α-glucosidase caused a reduction in α-glucosidase activity. 3D fluorescence and CD spectra results indicated that the binding of honokiol to α-glucosidase caused conformational change in α-glucosidase. Docking simulated the detailed interactions between honokiol and α-glucosidase, including hydrogen and hydrophobic bonds. All findings showed that honokiol could be used as a natural inhibitor to develop α-glucosidase agents.
Collapse
Affiliation(s)
- Hua Zhu
- School of Chemistry and Chemical Engineering, Mianyang Teacher’s College, Mianyang, China
| | - Xin Zhong
- Dean’s Office, Mianyang Teacher’s College, Mianyang, China
| |
Collapse
|
4
|
He Y, Dong N, Wang X, Lv RJ, Yu Q, Yue HM. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath 2024; 28:1051-1065. [PMID: 38308748 DOI: 10.1007/s11325-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Mei Yue
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Tian Y, Luan X, Yang K. Chronotherapy involving rosiglitazone regulates the phenotypic switch of vascular smooth muscle cells by shifting the phase of TNF-α rhythm through triglyceride accumulation in macrophages. Heliyon 2024; 10:e30708. [PMID: 38803898 PMCID: PMC11128472 DOI: 10.1016/j.heliyon.2024.e30708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives Vascular diseases are often caused by the interaction between macrophages and vascular smooth muscle cells (VSMCs). This study aims to elucidate whether chronotherapy with rosiglitazone (RSG) can regulate the secretion rhythm of macrophages, thereby controlling the phenotypic switch of VSMCs and clarifying the potential molecular mechanisms, providing a chronotherapeutic approach for the treatment of vascular diseases. Methods RAW264.7 cells and A7r5 cells were synchronized via a 50 % FBS treatment. M1-type macrophages were induced through Lipopolysaccharide (LPS) exposure. Additionally, siRNA and plasmids targeting PPARγ were transfected into macrophages. The assessment encompassed cell viability, migration, inflammatory factor levels, lipid metabolites, clock gene expression, and relative protein expression. Results We revealed that, in alignment with core clock genes Bmal1 and CLOCK, RSG administration at ZT2 advanced the phase of TNF-α release rhythm, while ZT12 administration shifted it backward. Incubation with TNF-α at ZT2 significantly promoted the phenotype switch of VSMCs. This effect diminished when incubated at ZT12, implicating the involvement of the clock-MAPK pathway in VSMCs. Furthermore, RSG administration at ZT2 advanced the phases of PPARγ and Bmal1 genes, whereas ZT12 administration shifted them backward. Additionally, PPARγ overexpression significantly induced triglyceride (TG) accumulation in macrophages. Exogenous TG upregulated Bmal1 and CLOCK gene expression in macrophages and significantly increased TNF-α release. Conclusion Chronotherapy involving RSG induces TG accumulation within macrophages, resulting in alterations in circadian gene rhythms. These changes, in turn, modulate the phase of rhythmic TNF-α release and play a regulatory role in VSMCs phenotype switch. Our study establishes a theoretical foundation for chronotherapy of PPARγ agonists.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241001. PR China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| |
Collapse
|
6
|
Yang J, Wang Y, Xia Y, Ren Y, Wang Z, Meng X, Li S, Liu X, Shao J. PFOS Elicits Cytotoxicity in Neuron Through Astrocyte-Derived CaMKII-DLG1 Signaling In Vitro Rat Hippocampal Model. Neurochem Res 2024; 49:1226-1238. [PMID: 38393622 DOI: 10.1007/s11064-024-04109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Both epidemiological investigation and animal experiments demonstrated that pre-/postnatal exposure to perfluorooctane sulfonic acid (PFOS) could induce neurodevelopmental disorders. Previous studies showed that astrocyte was involved in PFOS-induced neurotoxicity, while little information is available. In the present study, the role of astrocyte-derived calmodulin-dependent protein kinase II (CaMKII)-phosphorylated discs large homolog 1 (DLG1) signaling in PFOS eliciting cytotoxicity in neuron was explored with primary cultured hippocampal astrocyte and neuron. The application of PFOS showed a decreased cell viability, synapse length and glutamate transporter 1 (GLT-1) expression, but an increased CaMKII, DLG1 and cyclic AMP response element binding protein (CREB) expression in primary cultured astrocyte. With 2-(2-hydroxyethylamino)-6-aminohexylcarbamic acid tert-butyl ester-9-isopropylpurine (CK59), the CaMKII inhibitor, the disturbed cell viability and molecules induced by PFOS could be alleviated (CREB expression was excluded) in astrocytes. The cytotoxic effect of neuron exposed to astrocyte conditional medium collected from PFOS (PFOS-ACM) pretreated with CK59 was also decreased. These results indicated that PFOS mediated GLT-1 expression through astrocyte-derived CaMKII-DLG signaling, which might be associated with injuries on neurons. The present study gave an insight in further exploration of mechanism in PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Ying Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuyan Xia
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yajie Ren
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhi Wang
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xin Meng
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Yu S, Zhang Z, Qin Z, Liu M, Zhao X, Cheng Y, Xue P, Wang X, Chen L, Wu Q, Ju L, Tang J. Prenatal diesel exhaust exposure alters hippocampal synaptic plasticity in offspring. Aging (Albany NY) 2024; 16:4348-4362. [PMID: 38431308 PMCID: PMC10968710 DOI: 10.18632/aging.205592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.
Collapse
Affiliation(s)
- Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyang Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyu Qin
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Meijun Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoye Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lin Chen
- Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Linling Ju
- Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Wang X, Wang R, Zhang Z, Luo C, Zhao Z, Ruan J, Huang R, Zhang H, Wu Q, Yu S, Tang J, Zhao X. Level-specific associations of urinary antimony with cognitive function in US older adults from the National Health and Nutrition Examination Survey 2011-2014. BMC Geriatr 2022; 22:663. [PMID: 35962346 PMCID: PMC9375424 DOI: 10.1186/s12877-022-03351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have looked at antimony (Sb) as a new neurotoxin which causes neuronal apoptosis in animal studies. At the population level, however, there is no direct evidence for a relationship between Sb exposure and cognitive performance. METHOD The study comprehensively assessed the correlation between urinary antimony levels and cognitive test scores in 631 creatinine-corrected older persons using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. RESULTS Using logistic regression, the study looked at the prevalence of cognitive impairment at different levels of urine antimony concentrations and found that, after controlling for covariates, higher doses of urinary antimony were positively associated with cognitive function compared to controls, odds ratio (ORs) with 95% confidence interval (CI) were 0.409 (0.185-0.906) and 0.402 (0.186-0.871) respectively. Restricted cubic spline curves showed a non-linear and dose-specific correlation between urinary antimony and cognitive performance, with lower doses associated with better cognitive performance, while higher doses may be associated with cognitive impairment. CONCLUSIONS Our data provide evidence for a correlation between Sb and cognitive function at the population level, although the specific mechanisms need to be investigated further.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zeyao Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongbing Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
9
|
Yu S, Li Z, Zhang Q, Wang R, Zhao Z, Ding W, Wang F, Sun C, Tang J, Wang X, Zhang H, Huang R, Wu Q, Jiang J, Zhao X. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113413. [PMID: 35305351 DOI: 10.1016/j.ecoenv.2022.113413] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Exposure to antimony (Sb), recently identified as a nerve pollutant, can result in neuron damage; but, associated-neurotoxicological mechanisms were still not clear. Herein, we assessed the role of ferroptosis in Sb-mediated neurotoxicity and clarified the underlying mechanism. Following Sb exposure, ferroptosis was significantly promoted in vivo and in vitro. Moreover, following use of ferrostatin-1 (fer-1) to inhibit ferroptosis, Sb-induced ferroptosis in PC12 cells was effectively attenuated. Sb accelerated lysosomal transport and subsequent degradation of glutathione peroxidase 4 (GPX4), resulting in ferroptosis. Furthermore, chaperone-mediated autophagy (CMA) was activated following treatment with Sb, while inhibition of CMA by lysosomal associated protein 2 A (LAMP2A) knockdown attenuated Sb-induced GPX4 degradation. Sb treatment also increased expression of the chaperones heat shock cognate protein 70 (HSC70) and heat shock protein 90 (HSP90) and the lysosome receptor LAMP2A, and increased binding of HSP90, HSC70, and LAMP2A with GPX4 was observed, indicating increased formation of the chaperone-GPX4 complex. Finally, GPX4 overexpression significantly protected PC12 cells from activation of Sb-stimulated ferroptosis and subsequent cytotoxicity. Collectively, our results provide a original mechanism by which Sb triggers neurotoxicity, to concluded that Sb stimulates neuronal ferroptosis through CMA-mediated GPX4 degradation.
Collapse
Affiliation(s)
- Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhijie Li
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Qin Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenjie Ding
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Provincial, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Hongbing Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|