1
|
Nakano T, Yoshida E, Sasaki Y, Kazama S, Katami F, Aoki K, Fujie T, Du K, Hara T, Yamamoto C, Takahashi T, Fujiwara Y, Eto K, Iwakura Y, Shinoda Y, Kaji T. Mechanisms Underlying Sensory Nerve-Predominant Damage by Methylmercury in the Peripheral Nervous System. Int J Mol Sci 2024; 25:11672. [PMID: 39519224 PMCID: PMC11545846 DOI: 10.3390/ijms252111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Sensory disturbances and central nervous system symptoms are important in patients with Minamata disease. In the peripheral nervous system of these patients, motor nerves are not strongly injured, whereas sensory nerves are predominantly affected. In this study, we investigated the mechanisms underlying the sensory-predominant impairment of the peripheral nervous system caused by methylmercury. We found that the types of cell death in rat dorsal root ganglion (DRG) neurons caused by methylmercury included apoptosis, necrosis, and necroptosis. Methylmercury induced apoptosis in cultured rat DRG neurons but not in anterior horn neurons or Schwann cells. Additionally, methylmercury activated both caspase 8 and caspase 3 in DRG neurons. It increased the expression of tumor necrosis factor (TNF) receptor-1 and the phosphorylation of receptor-interacting protein kinase 3 (RIP3) and mixed-lineage kinase domain-like pseudokinase (MLKL). The expression of TNF-α was increased in macrophage-like RAW264.7 cells by methylmercury. The increase was suggested to be mediated by the NF-κB pathway. Moreover, methylmercury induced neurological symptoms, evaluated by a hindlimb extension response, were significantly less severe in TNF-α knockout mice. Based on these results and our previous studies, we propose the following hypothesis regarding the pathogenesis of sensory nerve-predominant damage by methylmercury: First, methylmercury accumulates within sensory nerve neurons and initiates cell death mechanisms, such as apoptosis, on a small scale. Second, cell death triggers the infiltration of macrophages into the sensory fibers. Third, the macrophages are stimulated by methylmercury and secrete TNF-α through the NF-κB pathway. Fourth, TNF-α induces cell death mechanisms, including necrosis, apoptosis through the caspase 8/3 pathway, and necroptosis through the TNFR1-RIP1-RIP3-MLKL pathway, activated by methylmercury in sensory neurons. Consequently, methylmercury exhibits potent cytotoxicity specific to the DRG/sensory nerve cells in the peripheral nervous system. This chain of events caused by methylmercury may contribute to sensory disturbances in patients with Minamata disease.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko 270-1194, Chiba, Japan
| | - Yu Sasaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Shigekatsu Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Fumika Katami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Kazuhiro Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Ke Du
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
| | - Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Tsutomu Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Yasuyuki Fujiwara
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai, 272 Ikurakitakata, Tamana 865-0041, Kumamoto, Japan;
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan;
| | - Yo Shinoda
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| |
Collapse
|
2
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Zhang K, Hu Z, Ding Q, Liao J, Li Q, Hu L, Li Y, Zhang H, Pan J, Tang Z. Long-Term Copper Exposure Induced Excessive Autophagy of the Porcine Spleen. Biol Trace Elem Res 2023; 201:2356-2364. [PMID: 35794302 DOI: 10.1007/s12011-022-03329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is one of the essential trace elements and is widespread in the environment. However, excessive exposure will induce toxicity in animals. To investigate the potential mechanisms of Cu-induced porcine spleen toxicity, sixty 30-day-old pigs were randomly divided into three groups. The control group was fed a basal diet and two treatment groups were separately fed the diet with 125 mg/kg and 250 mg/kg of Cu for 80 days. The result of immunohistochemical staining showed that the autophagy marker p62 was significantly increased under Cu exposure, and the immunofluorescence results showed the same trend as LC33-. Meanwhile, Cu intensified autophagy by increasing the expression levels of autophagy-related genes and proteins (LC3, p62, ATG5, Beclin1, and PINK1). These results suggested that long-term Cu exposure induced excessive autophagy in the porcine spleen, laying the groundwork for future studies on Cu-induced immunotoxicity in the spleen and increasing the public safety awareness of the excessive Cu-induced contamination in the environment.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Qingyu Ding
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Takanezawa Y, Kashiwano Y, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Methylmercury drives lipid droplet formation and adipokine expression during the late stages of adipocyte differentiation in 3T3-L1 cells. Toxicology 2023; 486:153446. [PMID: 36708982 DOI: 10.1016/j.tox.2023.153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Chronic exposure to methylmercury (MeHg) is positively associated with obesity and metabolic syndromes. However, the effect of MeHg on adipogenesis has not been thoroughly investigated. This study investigated the effects of continuous exposure to 0.5 µM MeHg on adipocyte differentiation in 3T3-L1 cells. Oil Red O staining and triglycerides (TG) assays demonstrated that MeHg enhanced the TG content in 3T3-L1 cells. MeHg enhanced the mRNA and protein expression of adipocyte differentiation markers including peroxisome proliferator-activated receptor γ, adiponectin, and fatty acid-binding protein, and their expression levels were prominent during the late stages (days 6-8) after the induction of differentiation. In addition, 0.5 µM MeHg promoted the expression of autophagy-related genes, including light chain 3 B-II and p62, after induction of differentiation. Treatment of 3T3-L1 cells with chloroquine (CQ), an autophagy inhibitor, during the early stages (days 0-2) after induction of differentiation inhibited cellular lipid accumulation in the presence of 0.5 µM MeHg. However, treatment with CQ during the late stages (days 6-8) had little effect on the MeHg-induced increase in TG content and the expression of adipocyte differentiation markers. Although the underlying mechanisms in the late stages remain to be completely elucidated, but the present data suggest that autophagy and other mechanisms play critical roles in adipogenesis during MeHg-induced differentiation. Collectively, our results suggest that continuous exposure to MeHg induces TG accumulation and expression of genes related to adipogenesis, especially during the late stages of 3T3-L1 differentiation, which may contribute to an improved understanding of MeHg-induced adipogenesis.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yui Kashiwano
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
5
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
6
|
Zhu W, Dong W, Zhang S, Shuai Y. Alterations between Autophagy and Apoptosis in Alveolar Bone Mesenchymal Stem Cells under Orthodontic Force and Their Effects on Osteogenesis. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Wenyin Zhu
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Wenrui Dong
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Shuangshuang Zhang
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Yi Shuai
- Department of Stomatology, General Hospital of Eastern Theater Command
| |
Collapse
|