1
|
Jauniaux B, Burke L, Snook N, Karakantza M, Kerr M, Wilson M, Zougman A, Bellamy M, Banks RE, Moore J. Mechanistic insights from a pilot exploratory study of the dynamic proteomic changes during plasma exchange in patients with acute liver failure. Transfus Apher Sci 2024; 64:104028. [PMID: 39566347 DOI: 10.1016/j.transci.2024.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND & AIMS Therapeutic plasma exchange (PEX) has shown potential in improving transplant-free survival in acute liver failure (ALF) however the mechanism of action is not understood. This exploratory study aimed to elucidate the circulating proteomic changes associated with PEX in ALF to provide insight into mechanisms underlying the benefit of this therapy. METHODS Consecutive patients admitted with ALF between June 2019 and August 2020 were enrolled. Patients received either standard medical treatment (n = 5) or PEX (n = 5). Plasma samples were collected at multiple time points and analysed using the Olink Proximity Extension Assay. Comparative analyses included healthy controls and Octaplas batches. RESULTS Biomarker results were available for 54 samples: Octaplas batches (n = 7), healthy controls (n = 6), ALF-standard medical treatment (n = 8), and ALF-PEX (n = 33). Proteomic analysis of 177 biomarkers revealed marked baseline differences between ALF and healthy controls, with ALF patients exhibiting lower levels of proteins secreted by the liver and higher levels of inflammatory cytokines and growth factors. Longitudinal analysis showed several distinct patterns with PEX. Proteins including carboxylesterase-1, hepatocyte growth factor, fetuin B, IL-6 and IL-10 showed differential expression patterns longitudinally, indicating some of the potential underlying mechanisms and therapeutic effects of PEX. CONCLUSIONS PEX in ALF patients leads to dynamic proteomic changes, reflecting its multifaceted role in modulating inflammation, liver regeneration and replacing essential proteins. These findings provide insight into some of the changes in circulating blood proteins and underlying mechanisms of PEX.
Collapse
Affiliation(s)
| | - Laura Burke
- Leeds Liver Unit, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Nicola Snook
- Adult Intensive Care Unit, St James's University Hospital, Leeds LS9 7TF, UK
| | - Marina Karakantza
- Dept of Haematology, St James's University Hospital, Leeds LS9 7TF, UK; NHS Blood and Transplant, 500, North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Maria Kerr
- NHS Blood and Transplant, 500, North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Michelle Wilson
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Alexandre Zougman
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Mark Bellamy
- Adult Intensive Care Unit, St James's University Hospital, Leeds LS9 7TF, UK
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Joanna Moore
- Leeds Liver Unit, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK; Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK.
| |
Collapse
|
2
|
Luyendyk JP, Morozova E, Copple BL. Good Cells Go Bad: Immune Dysregulation in the Transition from Acute Liver Injury to Liver Failure After Acetaminophen Overdose. Drug Metab Dispos 2024; 52:722-728. [PMID: 38050055 PMCID: PMC11257689 DOI: 10.1124/dmd.123.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The role of inflammatory cells and other components of the immune system in acetaminophen (APAP)-induced liver injury and repair has been extensively investigated. Although this has resulted in a wealth of information regarding the function and regulation of immune cells in the liver after injury, apparent contradictions have fueled controversy around the central question of whether the immune system is beneficial or detrimental after APAP overdose. Ultimately, this may not be a simple assignment of "good" or "bad." Clinical studies have clearly demonstrated an association between immune dysregulation and a poor outcome in patients with severe liver damage/liver failure induced by APAP overdose. To date, studies in mice have not uniformly replicated this connection. The apparent disconnect between clinical and experimental studies has perhaps stymied progress and further complicated investigation of the immune system in APAP-induced liver injury. Mouse models are often dismissed as not recapitulating the clinical scenario. Moreover, clinical investigation is most often focused on the most severe APAP overdose patients, those with liver failure. Notably, recent studies have made it apparent that the functional role of the immune system in the pathogenesis of APAP-induced liver injury is highly context dependent and greatly influenced by the experimental conditions. In this review, we highlight some of these recent findings and suggest strategies seeking to resolve and build on existing disconnects in the literature. SIGNIFICANCE STATEMENT: Acetaminophen overdose is the most frequent cause of acute liver failure in the United States. Studies indicate that dysregulated innate immunity contributes to the transition from acute liver injury to acute liver failure. In this review, we discuss the evidence for this and the potential underlying causes.
Collapse
Affiliation(s)
- James P Luyendyk
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Elena Morozova
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Bryan L Copple
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
McGill MR. The Role of Mechanistic Biomarkers in Understanding Acetaminophen Hepatotoxicity in Humans. Drug Metab Dispos 2024; 52:729-739. [PMID: 37918967 PMCID: PMC11257692 DOI: 10.1124/dmd.123.001281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Our understanding of the fundamental molecular mechanisms of acetaminophen (APAP) hepatotoxicity began in 1973 to 1974, when investigators at the US National Institutes of Health published seminal studies demonstrating conversion of APAP to a reactive metabolite that depletes glutathione and binds to proteins in the liver in mice after overdose. Since then, additional groundbreaking experiments have demonstrated critical roles for mitochondrial damage, oxidative stress, nuclear DNA fragmentation, and necrotic cell death as well. Over the years, some investigators have also attempted to translate these mechanisms to humans using human specimens from APAP overdose patients. This review presents those studies and summarizes what we have learned about APAP hepatotoxicity in humans so far. Overall, the mechanisms of APAP hepatotoxicity in humans strongly resemble those discovered in experimental mouse and cultured hepatocyte models, and emerging biomarkers also suggest similarities in liver repair. The data not only validate the first mechanistic studies of APAP-induced liver injury performed 50 years ago but also demonstrate the human relevance of numerous studies conducted since then. SIGNIFICANCE STATEMENT: Human studies using novel translational, mechanistic biomarkers have confirmed that the fundamental mechanisms of acetaminophen (APAP) hepatotoxicity discovered in rodent models since 1973 are the same in humans. Importantly, these findings have guided the development and understanding of treatments such as N-acetyl-l-cysteine and 4-methylpyrazole over the years. Additional research may improve not only our understanding of APAP overdose pathophysiology in humans but also our ability to predict and treat serious liver injury in patients.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health; Department of Pharmacology and Toxicology, College of Medicine; and Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
4
|
Umbaugh DS, Nguyen NT, Smith SH, Ramachandran A, Jaeschke H. The p21 + perinecrotic hepatocytes produce the chemokine CXCL14 after a severe acetaminophen overdose promoting hepatocyte injury and delaying regeneration. Toxicology 2024; 504:153804. [PMID: 38614205 PMCID: PMC11108579 DOI: 10.1016/j.tox.2024.153804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sawyer H Smith
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Yuan X, Chen P, Luan X, Yu C, Miao L, Zuo Y, Liu A, Sun T, Di G. NLRP3 deficiency protects against acetaminophen‑induced liver injury by inhibiting hepatocyte pyroptosis. Mol Med Rep 2024; 29:61. [PMID: 38391117 PMCID: PMC10902631 DOI: 10.3892/mmr.2024.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Acetaminophen (APAP) overdose is the primary cause of drug‑induced acute liver failure in numerous Western countries. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation serves a pivotal role in the pathogenesis of various forms of acute liver injury. However, the cellular source for NLRP3 induction and its involvement during APAP‑induced hepatotoxicity have not been thoroughly investigated. In the present study, hematoxylin and eosin staining was performed to assess histopathological changes of liver tissue. Immunohistochemistry staining(NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3), western blotting (NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3) and RT‑qPCR (NLRP3, Caspase‑1 and IL‑1β) were performed to assess the expression of NLRP3/GSDMD signaling pathway. TUNEL staining was performed to assess apoptosis of liver tissue. The serum expression levels of inflammatory factors (IL‑6, IL‑18, IL‑1β and TNF‑α) were assessed using ELISA and inflammation of liver tissue was assessed using immunohistochemistry (Ly6G and CD68) and RT‑qPCR (TNF‑α, Il‑6, Mcp‑1, Cxcl‑1, Cxcl‑2). A Cell Counting Kit‑8 was performed to assess cell viability and apoptosis. Protein and gene expression were analyzed by western blotting (PCNA, CCND1) and RT‑qPCR (CyclinA2, CyclinD1 and CyclinE1). Through investigation of an APAP‑induced acute liver injury model (AILI), the present study demonstrated that APAP overdose induced activation of NLRP3 and cleavage of gasdermin D (GSDMD) in hepatocytes, both in vivo and in vitro. Additionally, mice with hepatocyte‑specific knockout of Nlrp3 exhibited reduced liver injury and lower mortality following APAP intervention, accompanied by decreased infiltration of inflammatory cells and attenuated inflammatory response. Furthermore, pharmacological blockade of NLRP3/GSDMD signaling using MCC950 or disulfiram significantly ameliorated liver injury and reduced hepatocyte death. Notably, hepatocyte Nlrp3 deficiency promoted liver recovery by enhancing hepatocyte proliferation. Collectively, the present study demonstrated that inhibition of the NLRP3 inflammasome protects against APAP‑induced acute liver injury by reducing hepatocyte pyroptosis and suggests that targeting NLRP3 may hold therapeutic potential for treating AILI.
Collapse
Affiliation(s)
- Xinying Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Chen
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoyu Luan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Chaoqun Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Longyu Miao
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yaru Zuo
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Anxu Liu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyi Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guohu Di
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
6
|
Seo SH, Lee JE, Ham DW, Shin EH. Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes. PARASITES, HOSTS AND DISEASES 2024; 62:30-41. [PMID: 38443768 PMCID: PMC10915271 DOI: 10.3347/phd.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Ji-Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
- Seoul National University Bundang Hospital Medical Science, Seongnam 13620,
Korea
| |
Collapse
|
7
|
Lv L, Ren S, Jiang H, Yan R, Chen W, Yan R, Dong J, Shao L, Yu Y. The oral administration of Lacticaseibacillus casei Shirota alleviates acetaminophen-induced liver injury through accelerated acetaminophen metabolism via the liver-gut axis in mice. mSphere 2024; 9:e0067223. [PMID: 38193757 PMCID: PMC10826347 DOI: 10.1128/msphere.00672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin, and hepatic cell necrosis. Moreover, LcS alleviated acetaminophen-induced intestinal mucosal permeability, decreased serum IL-1α and lipopolysaccharide levels, and elevated serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol, and sugars in the gut. Additionally, the transcriptomic and proteomic results showed that LcS mitigated the decrease in metabolic and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.IMPORTANCEAcetaminophen is the most frequently used antipyretic analgesic worldwide. As a result, overdoses easily occur and lead to drug-induced acute liver injury, which quickly progresses to liver failure with a mortality of 60%-80% if not corrected in time. The current emergency treatment for overused acetaminophen needs to be administered within 8 hours to avoid liver injury or even liver failure. Therefore, developing preventive strategies for liver injury during planned acetaminophen medication is particularly important, preferably nonpharmacological methods. Lacticaseibacillus casei Shirota (LcS) is a famous probiotic that has been used for many years. Our study found that LcS significantly alleviated acetaminophen-induced acute liver injury, especially acetaminophen-induced liver injury toward fulminant hepatic failure. Here, we elucidated the function and potential mechanisms of LcS in alleviating acetaminophen-induced acute liver injury, hoping it will provide preventive strategies to people during acetaminophen treatment.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Siqi Ren
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenyi Chen
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiyi Yan
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinming Dong
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Shao
- The Affiliated Hospital of Hangzhou Normal University, Institute of Translational Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ying Yu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
9
|
Umbaugh DS, Jaeschke H. Biomarker discovery in acetaminophen hepatotoxicity: leveraging single-cell transcriptomics and mechanistic insight. Expert Rev Clin Pharmacol 2024; 17:143-155. [PMID: 38217408 PMCID: PMC10872301 DOI: 10.1080/17512433.2024.2306219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury and can cause a rapid progression to acute liver failure (ALF). Therefore, the identification of prognostic biomarkers to determine which patients will require a liver transplant is critical for APAP-induced ALF. AREAS COVERED We begin by relating the mechanistic investigations in mouse models of APAP hepatotoxicity to the human APAP overdose pathophysiology. We draw insights from the established sequence of molecular events in mice to understand the progression of events in the APAP overdose patient. Through this mechanistic understanding, several new biomarkers, such as CXCL14, have recently been evaluated. We also explore how single-cell RNA sequencing, spatial transcriptomics, and other omics approaches have been leveraged for identifying novel biomarkers and how these approaches will continue to push the field of biomarker discovery forward. EXPERT OPINION Recent investigations have elucidated several new biomarkers or combination of markers such as CXCL14, a regenerative miRNA signature, a cell death miRNA signature, hepcidin, LDH, CPS1, and FABP1. While these biomarkers are promising, they all require further validation. Larger cohort studies analyzing these new biomarkers in the same patient samples, while adding these candidate biomarkers to prognostic models will further support their clinical utility.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
McGill MR, Curry SC. The Evolution of Circulating Biomarkers for Use in Acetaminophen/Paracetamol-Induced Liver Injury in Humans: A Scoping Review. LIVERS 2023; 3:569-596. [PMID: 38434489 PMCID: PMC10906739 DOI: 10.3390/livers3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Acetaminophen (APAP) is a widely used drug, but overdose can cause severe acute liver injury. The first reports of APAP hepatotoxicity in humans were published in 1966, shortly after the development of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as the first biomarkers of liver injury as opposed to liver function. Thus, the field of liver injury biomarkers has evolved alongside the growth in APAP hepatotoxicity incidence. Numerous biomarkers have been proposed for use in the management of APAP overdose patients in the intervening years. Here, we comprehensively review the development of these markers from the 1960s to the present day and briefly discuss possible future directions.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
- Department of Medical Toxicology, Banner-University Medical Center Phoenix, Phoenix, AZ 85006, USA
| |
Collapse
|
11
|
Roth K, Strickland J, Pant A, Freeborn R, Kennedy R, Rockwell CE, Luyendyk JP, Copple BL. Interleukin-10 disrupts liver repair in acetaminophen-induced acute liver failure. Front Immunol 2023; 14:1303921. [PMID: 38094302 PMCID: PMC10716295 DOI: 10.3389/fimmu.2023.1303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Systemic levels of the anti-inflammatory cytokine interleukin 10 (IL-10) are highest in acetaminophen (APAP)-induced acute liver failure (ALF) patients with the poorest prognosis. The mechanistic basis for this counterintuitive finding is not known, as induction of IL-10 is hypothesized to temper the pathological effects of immune cell activation. Aberrant production of IL-10 after severe liver injury could conceivably interfere with the beneficial, pro-reparative actions of immune cells, such as monocytes. Methods To test this possibility, we determined whether IL-10 levels are dysregulated in mice with APAP-induced ALF and further evaluated whether aberrant production of IL-10 prevents monocyte recruitment and/or the resolution of necrotic lesions by these cells. Results Our studies demonstrate that in mice challenged with 300 mg/kg acetaminophen (APAP), a hepatotoxic dose of APAP that fails to produce ALF (i.e., APAP-induced acute liver injury; AALI), Ly6Chi monocytes were recruited to the liver and infiltrated the necrotic lesions by 48 hours coincident with the clearance of dead cell debris. At 72 hours, IL-10 was upregulated, culminating in the resolution of hepatic inflammation. By contrast, in mice treated with 600 mg/kg APAP, a dose that produces clinical features of ALF (i.e., APAP-induced ALF; AALF), IL-10 levels were markedly elevated by 24 hours. Early induction of IL-10 was associated with a reduction in the hepatic numbers of Ly6Chi monocytes resulting in the persistence of dead cell debris. Inhibition of IL-10 in AALF mice, beginning at 24 hours after APAP treatment, increased the hepatic numbers of monocytes which coincided with a reduction in the necrotic area. Moreover, pharmacologic elevation of systemic IL-10 levels in AALI mice reduced hepatic myeloid cell numbers and increased the area of necrosis. Discussion Collectively, these results indicate that during ALF, aberrant production of IL-10 disrupts the hepatic recruitment of monocytes, which prevents the clearance of dead cell debris. These are the first studies to document a mechanistic basis for the link between high IL-10 levels and poor outcome in patients with ALF.
Collapse
Affiliation(s)
- Katherine Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Jenna Strickland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Asmita Pant
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Robert Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Rebekah Kennedy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E. Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - James P. Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Bryan L. Copple
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Van Campenhout R, De Groof TWM, Kadam P, Kwak BR, Muyldermans S, Devoogdt N, Vinken M. Nanobody-based pannexin1 channel inhibitors reduce inflammation in acute liver injury. J Nanobiotechnology 2023; 21:371. [PMID: 37821897 PMCID: PMC10566086 DOI: 10.1186/s12951-023-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The opening of pannexin1 channels is considered as a key event in inflammation. Pannexin1 channel-mediated release of adenosine triphosphate triggers inflammasome signaling and activation of immune cells. By doing so, pannexin1 channels play an important role in several inflammatory diseases. Although pannexin1 channel inhibition could represent a novel clinical strategy for treatment of inflammatory disorders, therapeutic pannexin1 channel targeting is impeded by the lack of specific, potent and/or in vivo-applicable inhibitors. The goal of this study is to generate nanobody-based inhibitors of pannexin1 channels. RESULTS Pannexin1-targeting nanobodies were developed as potential new pannexin1 channel inhibitors. We identified 3 cross-reactive nanobodies that showed affinity for both murine and human pannexin1 proteins. Flow cytometry experiments revealed binding capacities in the nanomolar range. Moreover, the pannexin1-targeting nanobodies were found to block pannexin1 channel-mediated release of adenosine triphosphate. The pannexin1-targeting nanobodies were also demonstrated to display anti-inflammatory effects in vitro through reduction of interleukin 1 beta amounts. This anti-inflammatory outcome was reproduced in vivo using a human-relevant mouse model of acute liver disease relying on acetaminophen overdosing. More specifically, the pannexin1-targeting nanobodies lowered serum levels of inflammatory cytokines and diminished liver damage. These effects were linked with alteration of the expression of several NLRP3 inflammasome components. CONCLUSIONS This study introduced for the first time specific, potent and in vivo-applicable nanobody-based inhibitors of pannexin1 channels. As demonstrated for the case of liver disease, the pannexin1-targeting nanobodies hold great promise as anti-inflammatory agents, yet this should be further tested for extrahepatic inflammatory disorders. Moreover, the pannexin1-targeting nanobodies represent novel tools for fundamental research regarding the role of pannexin1 channels in pathological and physiological processes.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Bioengineering Sciences Department, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
13
|
Humphries C, Dear JW. Novel biomarkers for drug-induced liver injury. Clin Toxicol (Phila) 2023; 61:567-572. [PMID: 37767912 DOI: 10.1080/15563650.2023.2259089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Liver toxicity due to medicines (drug-induced liver injury) is a challenge for clinicians and drug developers. There are well-established biomarkers of drug-induced liver injury, which are widely used and validated by decades of clinical experience. These include alanine aminotransferase and bilirubin. Limitations of the current biomarkers are well described, and this has resulted in global efforts to identify and develop new candidates. This process has been aided by regulatory pathways being established for biomarker qualification. This article aims to provide a broad overview of the mechanisms of liver toxicity and discuss emerging novel biomarkers. There is a focus on the recent advances in the identification and validation of novel biomarkers, their potential applications in drug development and clinical practice, and the challenges and opportunities in translating these biomarkers into routine clinical use. CURRENT GOLD-STANDARD BIOMARKERS Alanine and aspartate aminotransferase activities perform well in diagnosing established drug-induced liver injury but may lack specificity and are not prognostic. THE BURDEN OF PROOF FOR NOVEL BIOMARKERS The amount of evidence required for a new biomarker will depend on its context-of-use, specifically on the impact on patient outcome of a false negative or false positive result. LEADING POTENTIAL BIOMARKERS Cytokeratin-18, glutamate dehydrogenase, microRNA-122, high-mobility group box 1 proteins, osteopontin, and macrophage colony-stimulating factor receptor 1 are examples of lead candidates. POTENTIAL APPLICATIONS OF NOVEL BIOMARKERS The early detection of drug-induced liver injury, interpretation of an alanine aminotransferase activity increase, and decisions about dose escalation in clinical trials may all be informed by new biomarkers. CONCLUSIONS There have been numerous exploratory studies describing differences in biomarkers and their potential value in risk-stratifying populations or identifying specific patients who may be failed by current assessment protocols. Additionally, the use of exploratory biomarkers to guide clinical trial decision-making is becoming routine. The challenge is now clinically validating leading candidate biomarkers in the assessment of patients presenting with conditions such as paracetamol overdose, which place them at risk of acute liver injury. This will require robust clinical trials. If the use of these biomarkers is to be widely adopted, they will need to unequivocally demonstrate benefit in overall cost, morbidity or mortality.
Collapse
Affiliation(s)
- Christopher Humphries
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Sciences, University of Edinburgh, The Queens Medical Research Institute, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
14
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Xu L, Wang H. A dual role of inflammation in acetaminophen-induced liver injury. LIVER RESEARCH 2023. [DOI: 10.1016/j.livres.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Abstract
Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Janković SM. Acetaminophen toxicity and overdose: current understanding and future directions for NAC dosing regimens. Expert Opin Drug Metab Toxicol 2022; 18:745-753. [PMID: 36420805 DOI: 10.1080/17425255.2022.2151893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Although N-acetyl-cysteine (NAC) has long been used for the treatment of acetaminophen poisoning/overdose, the optimal NAC dosing regimen for varying patterns or severity of the poisoning/overdose is still unknown. AREAS COVERED Relevant literature was searched for in the MEDLINE (from 1964 until August 31st, 2022), SCOPUS (from 2004 until August 31st, 2022) and GOOGLE SCHOLAR (from 2004 until August 31st, 2022) databases, without restriction in terms of publication date. The inclusion criteria were: original clinical studies reporting results, and studies investigating efficacy and safety of NAC dosing regimens in case(s) of overdose or poisoning with acetaminophen. EXPERT OPINION For a more effective treatment of acetaminophen poisoning in the future, it will be crucial to advance the technology of measuring acetaminophen, its metabolites and NAC in the serum, preferably with the point-of-care technique, so that in real time it can be continuously assessed whether it is necessary to administer NAC, and further to increase the dose of NAC and extend the duration of its administration, or not.
Collapse
|