1
|
Elrherabi A, Bouhrim M, Abdnim R, Berraaouan A, Ziyyat A, Mekhfi H, Legssyer A, Bnouham M. Antihyperglycemic potential of the Lavandula stoechas aqueous extract via inhibition of digestive enzymes and reduction of intestinal glucose absorption. J Ayurveda Integr Med 2023; 14:100795. [PMID: 37683576 PMCID: PMC10492212 DOI: 10.1016/j.jaim.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a widespread metabolic disorder affecting global populations. Lavandula stoechas from Moroccan traditional medicine is used for its potential anti-diabetic effects. OBJECTIVE This study aims to evaluate the antihyperglycemic impact of the aqueous extract of L. stoechas (AqLs) and explore its mechanisms. METHODS The study employed a glucose tolerance test (OGTT) on normal and diabetic Wistar rats, administering AqLs at 150 mg/kg. In vitro, AqLs was tested against α-glucosidase and α-amylase activities, confirmed in vivo using normal and Allx-diabetic rats. The extract's impact on intestinal d-glucose absorption was assessed using the jejunum segment perfusion technique at 250 mg/kg in situ. Albino mice were used to assess toxicity. RESULTS AqLs significantly reduced postprandial hyperglycemia (P < 0.001) due to glucose overload. It inhibited pancreatic α-amylase (IC50: 0.485 mg/mL) and intestinal α-glucosidase (IC50: 168 µg/mL) in vitro. Oral AqLs at 150 mg/kg reduced hyperglycemia induced by sucrose and starch in normal and diabetic rats. It also lowered (P < 0.001) intestinal glucose absorption in situ at 250 mg/kg. Oral acute toxicity tests on Albino mice indicated no adverse effects at different doses. CONCLUSION to summarize, L. stoechas has evident antihyperglycemic effects attributed to inhibiting intestinal glucose absorption and key monosaccharide digestion enzymes like α-amylase and α-glucosidase.
Collapse
Affiliation(s)
- Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Ali Berraaouan
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda B.P. 717, Morocco.
| |
Collapse
|
2
|
Gourich AA, Touijer H, Drioiche A, Asbabou A, Remok F, Saidi S, Siddique F, Ailli A, Bourhia M, Salamatullah AM, Ouahmane L, Mouradi A, Eto B, Zair T. Insight into biological activities of chemically characterized extract from Marrubium vulgare L. in vitro, in vivo and in silico approaches. Front Chem 2023; 11:1238346. [PMID: 37663139 PMCID: PMC10470090 DOI: 10.3389/fchem.2023.1238346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Aqueous extracts of Marrubium vulgare L. (M. vulgare) are widely used in traditional medicine for their therapeutic effects. Hence, this study aims to evaluate in vitro, in vivo, and in silico the biological activities of M. vulgare aqueous extract to further support their traditional use. Qualitative phytochemical tests of M. vulgare extracts showed the presence of primary and secondary metabolites, while quantitative analyses recorded revealed the contents of total phenols, flavonoids, and tannins, with values of 488.432 ± 7.825 mg/EAG gallic acid extract/g, 25.5326 ± 1.317 mg/EQ Quercetin extract/g and 23.966 ± 0.187 mg/EC catechin extract/g, respectively. Characterization of the phytochemical constituents of the extract revealed the presence of catechin and maleic acid as the most abundant while the evaluation of the antioxidant power revealed that the extract possesses significant antioxidant capacity, antimitotic potential, and antimicrobial properties against Streptococcus agalactiae and Staphylococcus epidermidis among many others. The antidiabetic activity of the extract showed a potent antihyperglycemic effect and a significant modulation of the pancreatic α-amylase activity as revealed by both in vitro and in vivo analysis, while an in silico evaluation showed that chemicals in the studied extract exhibited the aforementioned activities by targeting 1XO2 antimitotic protein, W93 antidiabetic protein and 1AJ6 antimicrobial protein, which revealed them as worthy of exploration in drug discovery odyssey. Conclusively, the result of this study demonstrates the numerous biological activities of M. vulgare and gives credence to their folkloric and traditional usage.
Collapse
Affiliation(s)
- Aman Allah Gourich
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Hanane Touijer
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Ayoub Asbabou
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Firdaous Remok
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Soukaina Saidi
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Atika Ailli
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labeled Research Unit-CNRSTN 4, Cadi Ayyad University, Marrakech, Morocco
| | - Aicha Mouradi
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Touriya Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| |
Collapse
|
3
|
Saidi S, Remok F, Handaq N, Drioiche A, Gourich AA, Menyiy NE, Amalich S, Elouardi M, Touijer H, Bouhrim M, Bouissane L, Nafidi HA, Bin Jardan YA, Bourhia M, Zair T. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life (Basel) 2023; 13:life13051165. [PMID: 37240812 DOI: 10.3390/life13051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Soukaina Saidi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Firdaous Remok
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Plant Valorization and Protection Research Team, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School of Tetouan, Abdelmaek Essaadi University, Tetouan 93000, Morocco
| | - Aziz Drioiche
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Smail Amalich
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohamed Elouardi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Hanane Touijer
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Latifa Bouissane
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Laayoune 70000, Morocco
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| |
Collapse
|
4
|
Phenolic Content, Antioxidant, Antibacterial, Antihyperglycemic, and α-Amylase Inhibitory Activities of Aqueous Extract of Salvia lavandulifolia Vahl. Pharmaceuticals (Basel) 2023; 16:ph16030395. [PMID: 36986494 PMCID: PMC10051605 DOI: 10.3390/ph16030395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Salvia lavandulifolia Vahl essential oil is becoming more popular as a cognitive enhancer and treatment for memory loss. It is high in natural antioxidants and has spasmolytic, antiseptic, analgesic, sedative, and anti-inflammatory properties. Its aqueous extract has hypoglycemic activity and is used to treat diabetic hyperglycemia, but few studies have focused on it. The objective of this work is to evaluate the various biological and pharmacological powers of Salvia lavandulifolia Vahl leaf aqueous extract. Quality control of the plant material was first carried out. Followed by a phytochemical study on the aqueous extract of S. lavandulifolia leaves, namely phytochemical screening and determination of total polyphenols, flavonoids, and condensed tannins contents. Then, the biological activities were undertaken, in particular the antioxidant activity (total antioxidant activity and trapping of the DPPH° radical) and the antimicrobial activity. The chemical composition of this extract was also determined by HPLC-MS-ESI. Finally, the inhibitory effect of the α-amylase enzyme as well as the antihyperglycaemic effect was evaluated in vivo in normal rats overloaded with starch or D-glucose. The aqueous extract obtained by use of the decoction of leaves of S. lavandulifolia contains 246.51 ± 1.69 mg EQ of gallic acid/g DE, 23.80 ± 0.12 mg EQ quercetin/g DE, and 2.46 ± 0.08 mg EQ catechin /g DE. Its total antioxidant capacity is around 527.03 ± 5.95 mg EQ of ascorbic acid/g DE. At a concentration of 5.81 ± 0.23 µg/mL, our extract was able to inhibit 50% of DPPH° radicals. Moreover, it showed bactericidal effect against Proteus mirabilis, fungicidal against Aspergillus niger, Candida albicans, Candida tropicalis, and Saccharomyces cerevisiae, and fungistatic against Candida krusei. A marked antihyperglycemic activity (AUC = 54.84 ± 4.88 g/L/h), as well as a significant inhibitory effect of α-amylase in vitro (IC50 = 0.99 ± 0.00 mg/mL) and in vivo (AUC = 51.94 ± 1.29 g/L/h), is recorded in our extract. Furthermore, its chemical composition reveals the presence of 37.03% rosmarinic acid, 7.84% quercetin rhamnose, 5.57% diosmetin-rutinoside, 5.51% catechin dimer, and 4.57% gallocatechin as major compounds. The antihyperglycemic and α-amylase inhibitory activities, associated with the antioxidant properties of S. lavandulifolia, justify its use in the treatment of diabetes in traditional medicine and highlight its potential introduction into antidiabetic drugs.
Collapse
|
5
|
Laaraj N, Bouhrim M, Kharchoufa L, Tiji S, Bendaha H, Addi M, Drouet S, Hano C, Lorenzo JM, Bnouham M, Mimouni M. Phytochemical Analysis, α-Glucosidase and α-Amylase Inhibitory Activities and Acute Toxicity Studies of Extracts from Pomegranate (Punica granatum) Bark, a Valuable Agro-Industrial By-Product. Foods 2022; 11:foods11091353. [PMID: 35564076 PMCID: PMC9103815 DOI: 10.3390/foods11091353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Punica granatum is a tree of the Punicaceae family which is widespread all over the world with several types of varieties. Its fruit juice is highly prized, whereas the bark, rich in in phytochemicals such as flavonoids, hydrolysable tannins, phenolic acids, and fatty acids, is regarded an agro-industrial waste. It is utilized in traditional medicine for its medicinal properties in the treatment and prevention of a variety of ailments. This study aims to extract and to separate the phytochemical compounds from the bark of P. granatum, to identify them and to study the inhibitory effect of its extracts against antidiabetic activity. First, we carried out successive hot extractions with solvents (chloroform, acetone, methanol, and water) of increasing polarity by the Soxhlet. Then, using both qualitative and quantitative phytochemical investigation, we were able to identify groups of chemicals that were present in all extracts. We identified the majority of the molecular structures of chemicals found in each extract using HPLC-DAD analysis. The inhibition against both intestinal α-glucosidase and pancreatic α-amylase enzymes by P. granatum extracts was used to evaluate their potential antidiabetic effect in vitro. Our results demonstrated the great potential of the acetone extract. Ellagic acid, (−)-catechin, vanillin and vanillic acid were proposed as the most active compounds by the correlation analysis, and their actions were confirmed through the calculation of their IC50 and the determination of their inhibition mechanisms by molecular modelling. To summarize, these results showed that P. granatum bark, a natural agro-industrial by-product, may constitute a promising option for antidiabetic therapeutic therapy.
Collapse
Affiliation(s)
- Nassima Laaraj
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (N.L.); (S.T.); (H.B.)
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Salima Tiji
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (N.L.); (S.T.); (H.B.)
| | - Hasnae Bendaha
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (N.L.); (S.T.); (H.B.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement, (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
- Correspondence: (C.H.); (M.M.)
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Mostafa Mimouni
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (N.L.); (S.T.); (H.B.)
- Correspondence: (C.H.); (M.M.)
| |
Collapse
|
6
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Facile Fabrication of Nanoformulated Cinnamomum glaucescens Essential Oil as a Novel Green Strategy to Boost Potency Against Food Borne Fungi, Aflatoxin Synthesis, and Lipid Oxidation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Amphimas pterocarpoides harms.: An Evaluation of flavonoid and phenolic contents, wound healing, anthelmintic and antioxidant activities of the leaves and stem bark. Heliyon 2021; 7:e08261. [PMID: 34765780 PMCID: PMC8569476 DOI: 10.1016/j.heliyon.2021.e08261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022] Open
Abstract
The present study evaluated the wound healing, anthelmintic and antioxidant potentials of crude methanol extracts and fractions (petroleum ether, ethyl acetate and methanol) of the leaves and stem bark of Amphimas pterocarpoides. Wound healing activity was determined by the dermal excision model in rats; anthelmintic activity was evaluated by the adult worm motility test using the adult Indian worm, Pheretima postuma. Total flavonoid, phenolic content and antioxidant activity were assessed by the aluminum chloride colorimetric, Folin Ciocalteu, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and total antioxidant capacity (TAC) assays respectively. HPLC/UV fingerprints were developed for quality control. The maximum amount of phenolics and flavonoids were detected in the methanol fractions of the stem bark (225.0 ± 20.0 mg/g gallic acid equivalent (GAE) and 201.0 ± 1.41 mg/g quercetin equivalent (QCE) respectively) and leaves (84.54 ± 1.36 mg/g GAE and 130.7 ± 1.71 mg/g QCE, respectively). Both leaf and bark displayed remarkable free radical scavenging and TAC with the highest effect given by the methanol fractions. Significant (p < 0.05) wound contraction was achieved by topical application of the leaf (APL) and stem bark (APS) ointments (5-15%) with >90 % wound surface closure for 1% silver sulphadiazine, APS 15% and APL 10% treated groups by day 15. APL and APS demonstrated a concentration- and time-dependent paralysis and mortality of the P. posthuma with APL (6.25 mg/mL) causing worm paralysis at 82.60 min and death at 93 min, better than 10 mg/mL albendazole (paralysis at 76.30 min; death at 117 min). Tannins, triterpenoids, phytosterols, flavonoids, saponins and coumarins were detected in the leaves and bark. The results have proven the potential of A. pterocarpoides as a wound healing and anthelmintic agent, giving scientific credence to its use in traditional medicine.
Collapse
|
8
|
Wang L, Guo W, Haq SU, Guo Z, Cui D, Yang F, Cheng F, Wei X, Lv J. Anticoccidial Activity of Qinghao Powder Against Eimeria tenella in Broiler Chickens. Front Vet Sci 2021; 8:709046. [PMID: 34712720 PMCID: PMC8546117 DOI: 10.3389/fvets.2021.709046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
Artemisia annua (AAH) is traditionally used as an anti-malarial, expectorant and antipyretic Chinese medicine. The aim of this study was to explore the therapeutic effect of Qinghao Powder (QHP) on chicken coccidiosis, evaluate the safe dosage of QHP, and provide test basis for clinical medication. High-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) were used to detect artemisinin in Qinghao Powder (QHP) for quality control. The level of artemisinin in QHP was 81.03 mg/g. A total of 210 chicks (14 days of age) were divided randomly into seven groups: three QHP treatments (0.15, 0.30, and 0.60 g/kg), a toltrazuril control (1.00 mL/L), a sulfachloropyrazine sodium control (SSC, 0.30 g/L), an E. tenella-infected control, and a healthy control group. All the groups were inoculated orally with 7 × 104E. tenella oocysts except for the healthy control group. After seven days of administration, compared with the infected control group, chicks which were administered QHP, SS, and toltrazuril showed less bloody feces, oocyst output, and cecal lesions, and the protection rates were improved. The maximum rBWG and ACI were found in the SS-medicated group, followed by the groups medicated with 0.60 and 0.30 g/kg QHP. Therefore, a 0.30 g/kg dose level of QHP in the feed was selected as the recommend dose (RD) in the target animal safety test, in which 80 broiler chicks (14 days of age) were randomly divided into four major groups (I-healthy control group; II-1× RD; III-3× RD; IV-6× RD), with each group subdivided into two subgroups (A and B) consisting of 10 chicks each. After 7-day (for sub-group A) or 14-day (for sub-group B) administration, compared with the healthy control, treatment-related changes in BWG, feed conversion ratio (FCR), relative organ weight (ROW) of the liver, WBC counts, and levels of RBC, HGB, ALT, AST, and TBIL were detected in the 3× and 6× RD groups. No differences were noted in necropsy for all doses, and histopathological examinations exhibited no QHP-associated signs of toxicity or abnormalities in the liver or kidney. The findings suggest that QHP at a dose of 0.30 g/kg feed would be appropriate for therapy and intermittent treatment of E. tenella-infected chicks, the dosage in clinical applications should be set according to the recommended dose to ensure animal safety.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Wenzhu Guo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Shahbaz Ul Haq
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhiting Guo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Dongan Cui
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Feng Cheng
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Jiawen Lv
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
9
|
Benayad O, Bouhrim M, Tiji S, Kharchoufa L, Addi M, Drouet S, Hano C, Lorenzo JM, Bendaha H, Bnouham M, Mimouni M. Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules 2021; 11:1555. [PMID: 34827553 PMCID: PMC8615658 DOI: 10.3390/biom11111555] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the high volume of peel produced, Citrus by-product processing could be a significant source of phenolic compounds, in addition to essential oil. Citrus fruit residues, which are usually dumped as waste in the environment, could be used as a source of nutraceuticals. Citrus aurantium (L), also known as sour or bitter orange, is a member of the Rutaceae family and is the result of interspecific hybridization between Citrus reticulata and Citrus maxima. The purpose of this study is to chemically and biologically evaluate the peel of C. aurantium, which is considered a solid waste destined for abandonment. To achieve more complete extraction of the phytochemicals, we used a sequential extraction process with Soxhlet using the increasing polarity of solvents (i.e., cyclohexane, chloroform, ethyl acetate, acetone, and ethanol-water mixture). Essential oil (EO) from the Citrus peel, which was present at 1.12%, was also prepared by hydrodistillation for comparison. Various phytochemical assays were used to determine the qualitative chemical composition, which was subsequently characterized using GC-MS and HPLC-DAD. The inhibitory effects of C. aurantium peel extract on two enzymes, intestinal α-glucosidase and pancreatic α-amylase, were measured in vitro to determine their potential hypoglycemic and antidiabetic actions. Each extract had a significantly different phytochemical composition. According to GC-MS analyses, which allow the identification of 19 compounds, d-limonene is the most abundant compound in both EO and cyclohexane extract, at 35.17% and 36.15% (w/w). This comparison with hydrodistillation shows the value of the sequential process in extracting this valuable terpene in large quantities while also allowing for the subsequent extraction of other bioactive substances. On the contrary, linoleic acid is abundant (54.35% (w/w)) in ethyl acetate extract (EAE) with a lower amount of d-limonene. HPLC-DAD analysis allows the identification of 11 phytochemicals, with naringenin being the most abundant flavanone, detected in acetone extract (ACE) (23.94% (w/w)), ethanol-water extract mixture (EWE) (28.71% (w/w)), and chloroform extract (CFE) (30.20% (w/w)). Several extracts significantly inhibited α-amylase and/or α-glycosidase in vitro. At a dose of 332 g/mL, ACE, CFE, and EWE inhibited the two enzymes by approximately 98%. There were strong significant correlations between naringenin and α-glucosidase inhibition and between gallic acid and α-amylase inhibition. Molecular docking experiments further verified this. Finally, oral administration of C. aurantium extracts at a dose of 2000 mg/kg did not cause any effect on mice mortality or signs of acute toxicity, indicating that it is non-toxic at these doses. These findings suggest that C. aurantium peels could be a valuable by-product by providing a rich source of non-toxic phytoconstituents, particularly those with potential antidiabetic action that needs to be confirmed in vivo.
Collapse
Affiliation(s)
- Ouijdane Benayad
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Salima Tiji
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Mohamed Addi
- Laboratoire dʼAmélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Hasnae Bendaha
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Mostafa Mimouni
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| |
Collapse
|
10
|
da Costa Alves M, Pereira DE, de Cássia de Araújo Bidô R, Rufino Freitas JC, Fernandes Dos Santos CP, Barbosa Soares JK. Effects of the aqueous extract of Phyllanthus niruri Linn during pregnancy and lactation on neurobehavioral parameters of rats' offspring. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113862. [PMID: 33484906 DOI: 10.1016/j.jep.2021.113862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus niruri L. (Phyllanthaceae) is a plant used in traditional medicine, mainly to treat kidney stones. However, the effects of maternal exposure to P. niruri remain poorly explored. AIM OF THE STUDY The objective of this study was to investigate the effects of administration of aqueous extract of P. niruri (AEPN) during pregnancy and lactation, in maternal toxicity, reflex maturation, and offspring memory. MATERIALS AND METHODS Pregnant rats were divided into three groups (n = 8/group): Control (vehicle), AEPN 75, and AEPN 150 (each respectively treated with P. niruri at a dose of 75 and 150 mg/kg/day). The animals were treated via intragastric gavage during pregnancy and lactation. Weight gain, feed intake, and reproductive performance were analyzed in the mothers. In the offspring, the following tests were performed: Neonatal Reflex Ontogeny, Open Field Habituation Test and the Object Recognition Test in adulthood. RESULTS Maternal exposure to AEPN did not influence weight gain, feed intake, or reproductive parameters. In the offspring, anticipation of reflex ontogenesis (time of completion) was observed (p < 0.05). During adulthood, the AEPN groups presented decreases in exploratory activity upon their second exposure to the Open Field Habituation Test (in a dose-dependent manner) (p < 0.05). In the Object Recognition Test, administration of the extract at 75 and 150 mg/kg induced significant dose-dependent improvements in short and long-term memory (p < 0.05). CONCLUSION Administration of the AEPN accelerated the reflex maturation in neonates, and improved offspring memory while inducing no maternal or neonatal toxicity.
Collapse
Affiliation(s)
- Maciel da Costa Alves
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil.
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Rita de Cássia de Araújo Bidô
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Juliano Carlo Rufino Freitas
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Chemistry Department, Rural Federal University of Pernambuco, University City, 50740-540, Recife, Pernambuco State, Brazil.
| | | | - Juliana Késsia Barbosa Soares
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| |
Collapse
|
11
|
Toxicological evaluation of the ultrasonic extract from Dichroae radix in mice and wistar rats. Sci Rep 2020; 10:18206. [PMID: 33097762 PMCID: PMC7584596 DOI: 10.1038/s41598-020-75144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
This study was aimed at evaluating the acute and subchronic toxicity of ultrasonic extract of Dichroae radix (UEDR) in mice and rats. High performance liquid chromatography (HPLC) and thin layer chromatogrephy (TLC) were used to detect β-dichroine and α-dichroine in UEDR for quality control. The levels of β-dichroine and α-dichroine in UEDR were 1.46 and 1.53 mg/g, respectively. An oral LD50 of 2.43 g/kg BW was observed in acute toxicity test. After 28-day repeated oral administration, compared with the control group, treatment-related changes in body weight (BW) and body weight gain (BWG), lymphocyte counts and ratios, as well as in the relative organ weights (ROWs) of liver, kidney, lung, and heart, were detected in the middle- and high-dose groups (P < 0.05, P < 0.01), no differences were noted in the serum biochemical parameters and necropsy examinations in both sexes at all doses. Histopathological examinations exhibited UEDR-associated signs of toxicity or abnormalities. After 14 days withdrawal, no statistically significant or toxicologically relevant differences were observed in any of the UEDR-treated groups, and the hispathological lesions in the high-dose group were alleviated. Findings showed that long-course and high-dose of UEDR administration was toxic, and showed dose-dependence, the toxic damage was reversible.
Collapse
|
12
|
Khlifi R, Dhaouefi Z, Toumia IB, Lahmar A, Sioud F, Bouhajeb R, Bellalah A, Chekir-Ghedira L. Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. J Nutr Biochem 2020; 86:108490. [PMID: 32920086 DOI: 10.1016/j.jnutbio.2020.108490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
The wide morbidity of obesity has heightened interest in providing natural and safe compounds to maintain optimal health. The present study was designed to determine the chemical constituents and the effects of methanol leaf extract from Erica multiflora (M-EML) on mitigating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome (MS). LC-MS/MS characterization of M-EML allowed the identification of 14 secondary metabolites and showed that quercetin-3-O-glucoside and kaempferol-3-O-glucoside were the main compounds of our extract. In the in vivo study, the oral administration of M-EML (250 mg/kg) during the last 4 weeks of the experimentation alleviated HFFD-induced obesity, insulin resistance (IR) and cardiovascular diseases. Thus, M-EML treatment significantly normalized body and liver weight, allowed to a sharp decline in plasma levels of TC, TG and LDL-c by 32%, 35% and 66%, respectively. Moreover, hepatic enzymes, total and direct bilirubin, lipase and uric acid levels have been diminished in treated group. Histopathology of the liver confirmed the changes induced by HFFD and the hepatoprotective effect of M-EML. The supply of M-EML reduced NO production and cellular lysosomal enzyme activity by 44% and 60%, respectively compared to HFFD. Besides, M-EML showed decreased pro-inflammatory cytokines levels (259.5±47.35 pg/ml and 56.08±1.56 pg/ml) of TNF-α and IL-6, respectively. In addition, M-EML reduced liver malondialdehyde (MDA) content and enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. In contrast, these enzymatic activities have been disrupted in HFFD rats. Overall, M-EML prevented obesity through the modulation of metabolic syndrome, reducing inflammation and promoting antioxidant enzymes activities.
Collapse
Affiliation(s)
- Rihab Khlifi
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia.
| | - Zaineb Dhaouefi
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Imène Ben Toumia
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Aida Lahmar
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Fairouz Sioud
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Rim Bouhajeb
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Ahlem Bellalah
- Department of Pathology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| |
Collapse
|
13
|
Amarasiri SS, Attanayake AP, Arawwawala LDAM, Jayatilaka KAPW, Mudduwa LKB. Acute and 28-Day Repeated-Dose Oral Toxicity Assessment of Abelmoschus moschatus Medik. in Healthy Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1359050. [PMID: 32655655 PMCID: PMC7321509 DOI: 10.1155/2020/1359050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
Abstract
Abelmoschus moschatus Medik. (family: Malvaceae) has a long history of being used as a folk medicine in Sri Lanka. Despite the therapeutic use of this plant in traditional medicine, leaves of A. moschatus have not been subjected to scientific evaluation of toxicity/adverse effects in vivo. Thus, the present study was aimed to assess the acute and 28-day repeated-dose oral toxic effects of hexane (55 mg/kg), ethyl acetate (75 mg/kg), butanol (60 mg/kg), and aqueous (140 mg/kg) leaf extracts of A. moschatus in Wistar rats. Furthermore, identification of phytochemical constituents and determination of in vitro total antioxidant activity of the selected leaf extracts of A. moschatus were carried out. Repeated-dose oral administration of hexane and aqueous plant extracts produced no significant changes in the hematological profile and in selected biochemical parameters compared to the untreated healthy rats (p > 0.05). The administration of ethyl acetate and butanol extracts resulted in significant changes in some of the hematological parameters (p < 0.05), whereas biochemical parameters were not changed (p > 0.05). No significant changes in the relative organ weight of treated rats were observed (p > 0.05) except in the kidneys of Wistar rats treated with the ethyl acetate extract of A. moschatus (p < 0.05). Normal morphology with no signs of hemorrhages, necrosis, or inflammatory cell infiltrations was observed in the vital organs selected during the assessment of histopathology on H and E-stained tissue sections upon the treatment of selected extracts. Alkaloids were absent in the selected leaf extracts excluding the health risk for harmful alkaloids. The highest total antioxidant activity was reported in the butanol extract. In conclusion, the hexane and aqueous extracts of A. moschatus were completely nontoxic, whereas butanol and ethyl acetate extracts showed statistically significant changes in some hematological parameters and in relative organ weight of kidneys in healthy Wistar rats.
Collapse
Affiliation(s)
- Sachinthi S. Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P. Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Lakmini K. B. Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
14
|
Zhao L, Li P, Xu H, Han B, Chen J, Gao Z, Li J, Li X, Wu C. Toxicological safety evaluation in acute and 28-day studies of aqueous extract from Bei-Qi-Wu-Jia formula. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112324. [PMID: 31644940 DOI: 10.1016/j.jep.2019.112324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bei Qi Wu Jia (BQWJ), a modern preparation of a traditional Chinese medicinal formula, is a combination of Radix Astragali and Acanthopanacis Senticosi. Although BQWJ has been used to treat insomnia, fatigue, and loss of appetite, toxicological safety studies are rare in the literature. AIM OF THE STUDY To evaluate the acute and subacute toxicity of BQWJ extract after oral administration in mice and rats, respectively. MATERIALS AND METHODS In the acute toxicity study, mice underwent oral administration of 67.5 g extract/kg/day. In the subacute toxicity study, rats underwent a single oral administration of 1.25, 2.5, 5.0, or 10.0 g/kg/day of BQWJ extract for 28 days. The animals' general behavior, body weight, food intake, biochemical and hematologic parameters, organ coefficients, and pathological morphology were analyzed. RESULTS No evidence of toxicity was observed in the mice after acute exposure to BQWJ extract. The subacute results included no deaths and no changes in general behavior. Although BQWJ extract resulted in some significant changes in other parameters, these alterations cannot be considered treatment-related because they remained within normal ranges throughout the 28 days. CONCLUSIONS In conclusion, the oral administration of BQWJ extract at doses of less than 67.5 g/kg/day for 1 day or 10.0 g/kg/day for 28 consecutive days can be considered safe and showed no distinct toxicity or side effects in this study.
Collapse
Affiliation(s)
- Liutao Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Pan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Hongde Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Jingjing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Ziqing Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Jianglong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Xianbin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, 450001, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou, 450001, PR China.
| |
Collapse
|
15
|
Kpemissi M, Metowogo K, Melila M, Veerapur VP, Negru M, Taulescu M, Potârniche AV, Suhas DS, Puneeth TA, Vijayakumar S, Eklu-Gadegbeku K, Aklikokou K. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol Rep 2020; 7:162-168. [PMID: 31993335 PMCID: PMC6976914 DOI: 10.1016/j.toxrep.2020.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Acute and subchronic oral toxicity assessments of Combretum micranthum leaves extract were evaluated in Wistar rats of both sexes. In acute oral toxicity assessment, LD50 of Combretum micranthum leaves extract is greater than 5000 mg/kg. In subchronic oral toxicity assessment at doses of 500 and 1000 mg/kg/day for 28 days, No significant changes in food consumption, body weight gain, organ weights and in biochemical parameters. The level of PLT increased in female rats in the sub-chronic study but the immune system was not affected. No treatment related pathology was identified during histopathology.
Background Combretum micranthum (CM) (Combretaceae) is widely used in traditional medicine throughout West Africa for the treatment of diabetes, hypertension, inflammation, malaria and liver ailments. In our recent research we demonstrated that CM has nephroprotective potentials in diabetes mellitus, hypertension and renal disorders. However, to the best of our knowledge, no systematic study concerning its toxicity profile has been reported. Aim of the study The study carried out to evaluates the potential toxicity of the hydroalcoholic extract from leaves of the CM, through the method of acute and sub-chronic oral administration in rats. Materials and methods During the acute toxicity study, male and female rats were orally administrated with CM extract at single doses of 5000 mg/kg (n = 5/group/sex). Abnormal behaviour, toxic symptoms, weight, and death were observed for 14 consecutive days to assess the acute toxicity. For sub-chronic toxicity study, the extract was administered orally at doses of 500 and 1000 mg/kg (n = 5/group/sex) daily to Wistar rats for 28 days. The general behaviour and body weight of the rats was observed daily. A biochemical, haematological, macroscopical and histopathological examinations of several organs were conducted at the end of the treatment period. The CM extract was subjected to Fourier transform infrared spectrophotometric examination in order to detect the presence or absence of cyanide toxic compounds. Results The absence of absorbance peaks between the 2220−2260 cm−1 region of FT-IR spectrum of CM, indicating the absence of cyanide groups. This suggested that the CM extract may not contain toxic substances. During the acute toxicity test, no mortality or adverse effects were noted at the dose of 5000 mg/kg. In the subchronic study, the CM extract induced no mortality or treatment-related adverse effects with regard to body weight, general behaviour, relative organ weights, hematological, and biochemical parameters. Histopathological examination of vital organs showed normal architecture suggesting no morphological alterations. Conclusion The present study revealed that oral administration of CM extract for 28 days, at dosage up to 1000 mg/kg did not induce toxicological damage in rats. From acute toxicity study, the median lethal dose (LD50) of the extract was estimated to be more than 5000 mg/kg.
Collapse
Affiliation(s)
- Mabozou Kpemissi
- Faculty of Sciences, University of Lomé, Togo.,University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania.,Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur, 572 102, Karnataka, India
| | | | | | - Veeresh P Veerapur
- Sree Siddaganga College of Pharmacy, B.H. Road, Tumkur, 572 102, Karnataka, India
| | - Mihai Negru
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | - Marian Taulescu
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | - Adrian-Valentin Potârniche
- University of Agricultural Science and Veterinary Medicine, Manastur Street. 3-5, 400372, Cluj-Napoca, Romania
| | | | | | | | | | | |
Collapse
|
16
|
Khlifi R, Lahmar A, Dhaouefi Z, Kalboussi Z, Maatouk M, Kilani-Jaziri S, Ghedira K, Chekir-Ghedira L. Assessment of hypolipidemic, anti-inflammatory and antioxidant properties of medicinal plant Erica multiflora in triton WR-1339-induced hyperlipidemia and liver function repair in rats: A comparison with fenofibrate. Regul Toxicol Pharmacol 2019; 107:104404. [DOI: 10.1016/j.yrtph.2019.104404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
|
17
|
Raju KSR, Rashid M, Gundeti M, Taneja I, Malik MY, Singh SK, Chaturvedi S, Challagundla M, Singh SP, Gayen JR, Wahajuddin M. LC-ESI-MS/MS method for the simultaneous determination of isoformononetin, daidzein, and equol in rat plasma: Application to a preclinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1129:121776. [PMID: 31629309 DOI: 10.1016/j.jchromb.2019.121776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
Isoformononetin (methoxy isoflavone) is a potent osteogenic isoflavone abundantly present in Butea monosperma, Pisum sativum, Mung bean, Machaerium villosum, Medicago sativa, and Glycine max. In the current study, an LC-ESI-MS/MS method for the simultaneous evaluation of isoformononetin (IFN), daidzein (DZN) and equol (EQL) was developed and validated in rat plasma using biochanin A as an internal standard. IFN, DZN, and EQL separation was achieved by using acetonitrile and acetic acid (0.1%) in the ratio of 90:10 (% v/v) as mobile phase under isocratic conditions at a flow rate of 0.6 mL/min on Atlantis C18 (4.6 × 250 mm, 5.0 μm) column. The achieved method was linear within the concentration range of 0.5-500 ng/mL. The method was effectively applied to investigate the permeability, protein binding estimation and pharmacokinetics studies of IFN in rats. The PAMPA permeability of IFN was found to be high at pH 4.0 and 7.0. The protein binding was found to be about 91% of IFN. The oral bioavailability of IFN was found to be poor (21.6%). IFN was found to have a moderate clearance (2.9 L/h/kg) and a large apparent volume of distribution (12.1 L/kg). The plasma half-life (t1/2) and maximum attainable concentration (Cmax) of IFN at systemic circulation was found to be 1.9 ± 0.6 h and 269.3 ± 0.4 after oral administration.
Collapse
Affiliation(s)
- Kanumuri Siva Rama Raju
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, USA
| | - Mamunur Rashid
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manoj Gundeti
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Isha Taneja
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India; Certara UK Limited, Simcyp Division, Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Mohd Yaseen Malik
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sandeep Kumar Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India
| | | | | | - J R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Muhammad Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
18
|
Vadakkan K. Acute and sub-acute toxicity study of bacterial signaling inhibitor Solanum torvum root extract in Wister rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
Vahedi MM, Mahdian D, Jafarian AH, Iranshahi M, Esmaeilizadeh M, Ghorbani A. Toxicity assessment of Ferula gummosa administration during pregnancy, lactation, and juvenile period in rat. Drug Chem Toxicol 2017; 41:199-205. [DOI: 10.1080/01480545.2017.1337126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Davood Mahdian
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Ghaem Hospital Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Esmaeilizadeh
- Department of Basic Sciences, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Awounfack CF, Ateba SB, Zingue S, Mouchili OR, Njamen D. Safety evaluation (acute and sub-acute studies) of the aqueous extract of the leaves of Myrianthus arboreus P. Beauv. (Cecropiaceae) in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:169-178. [PMID: 27592311 DOI: 10.1016/j.jep.2016.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myrianthus arboreus P. Beauv (Cecropiaceae) is a medicinal plant distributed in forests and damp places of tropical Africa. Its leaves are widely used as food and/or for the treatment of various ailments including dysmenorrhoea, female infertility, tumors and diarrhea. However, to the best of our knowledge, no safety assessment of this plant has been reported yet. AIM OF STUDY The present study aimed at evaluating the safety of the aqueous extract of leaves of Myrianthus arboreus (MAA) in Wistar rats through an acute and sub-acute oral administration. MATERIAL AND METHODS In acute oral toxicity, the test was performed according to the Organization for Economic Cooperation and Development (OECD) guidelines Nr. 423 (acute toxicity class method, ATC) with slight modifications. Female Wistar rats were orally treated with the aqueous extract of M. arboreus at the doses of 2000 and 5000mg/kg. In sub-acute toxicity study, using the OECD guidelines Nr. 407, the extract was administered by gavage at the doses of 20, 110 and 200mg/kg/day for 28 consecutive days. RESULTS A single oral administration of 2000 or 5000mg/kg of the extract induced neither mortality nor exterior signs of toxicity indicating a LD50 >5000mg/kg. In sub-acute study, the extract decreased triglycerides, total cholesterol/high density lipoproteins ratio and atherogenic index of plasma in both sexes at all tested doses. Alanine transaminase decreased in both sexes at 200mg/kg and serum creatinine levels decreased at all tested doses in females. Moreover, significant increases in ovarian and uterine wet weights, red blood cell count, hematocrit, mean corpuscular hemoglobin and hemoglobin were observed at 200mg/kg in females. In males, this extract decreased white blood cell count, lymphocytes and relative weight of seminal vesicles and ventral prostate at 200mg/kg. CONCLUSION The aqueous extract of Myrianthus arboreus leaves was non-toxic in acute administration and exhibited a relatively low toxicity potential on accessory sex organs in both sexes, and leukocytes in males following the repeated 28-days oral administration of the dose 200mg/kg.
Collapse
Affiliation(s)
- Charline Florence Awounfack
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Sylvin Benjamin Ateba
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Stéphane Zingue
- Laboratory of Physiology, Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Oumarou Riepouo Mouchili
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Dieudonné Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| |
Collapse
|
21
|
Tchoumtchoua J, Makropoulou M, Ateba SB, Boulaka A, Halabalaki M, Lambrinidis G, Meligova AK, Mbanya JC, Mikros E, Skaltsounis AL, Mitsiou DJ, Njamen D, Alexis MN. Estrogenic activity of isoflavonoids from the stem bark of the tropical tree Amphimas pterocarpoides, a source of traditional medicines. J Steroid Biochem Mol Biol 2016; 158:138-148. [PMID: 26706281 DOI: 10.1016/j.jsbmb.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022]
Abstract
Various preparations of the African tree Amphimas pterocarpoides Harms are traditionally used to treat endocrine- related adverse health conditions. In the ovariectomized rat, the enriched in phenolics fraction of the methanol extract of stem bark of A. pterocarpoides acted as vaginotrophic agent of considerably weaker uterotrophic activity compared to estradiol. Evaluation of the fraction and 11 isoflavonoids isolated therefrom using Ishikawa cells and estrogen receptor (ER) isotype-specific reporter cells suggested that the estrogenic activity of the fraction could be attributed primarily to daidzein and dihydroglycitein and secondarily to glycitein. The potency-based selectivity of daidzein, dihydroglycitein and glycitein for gene expression through ERβ versus ERα, expressed relative to estradiol, was 37, 27 and 20, respectively. However, the rank order of relative-to-estradiol potencies of induction of alkaline phosphatase in Ishikawa cells, a reliable marker of estrogenic activity, was daidzein>dihydroglycitein>>glycitein. The considerably higher estrogenic activity of dihydroglycitein compared to glycitein could be attributed to the partial agonist/antagonist activity of dihydroglycitein through ERβ. Calculation of theoretical free energies of binding predicted the partial agonism/antagonism of dihydroglycitein through ERβ. The fraction and the isolated isoflavonoids promoted lactogenic differentiation of HC11 mammary epithelial cells at least as effectively as premenopausal levels of estradiol. This data suggests that the estrogenic activity of the fraction likely depends on the metabolism of glycitein to dihydroglycitein; that the fraction could exert vaginotrophic activity likely without challenging endocrine cancer risk more than estrogen-alone supplementation; and that the fraction's safety for the reproductive track warrants a more detailed evaluation.
Collapse
Affiliation(s)
- Job Tchoumtchoua
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Maria Makropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Sylvain Benjamin Ateba
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Aggeliki K Meligova
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 8046, Yaounde, Cameroon
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dieudonne Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|