Dogaru G, Bulboaca AE, Gheban D, Boarescu PM, Rus V, Festila D, Sitar-Taut AV, Stanescu I. Effect of Liposomal Curcumin on Acetaminophen Hepatotoxicity by Down-regulation of Oxidative Stress and Matrix Metalloproteinases.
In Vivo 2020;
34:569-582. [PMID:
32111755 PMCID:
PMC7157894 DOI:
10.21873/invivo.11809]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM
The hepatoprotective role of various molecules in drug-induced hepatotoxicity arouses great interest. We investigated the effect of liposomal curcumin (LCC) on experimental acetaminophen (APAP)-induced hepatotoxicity.
MATERIALS AND METHODS
Rats were randomly allocated into 5 groups, and the effect of two LCC concentrations was studied: group 1 - 1 ml intraperitoneal (i.p.) saline, group 2 - APAP pretreatment, group 3 - APAP+silymarin (extract of the silybum marianum with anti-inflammatory, anti-oxidant, and anti-fibrotic properties), group 4 - APAP+LCC1, group 5 - APAP+LCC2. The biomarkers of oxidative stress (nitric oxide and malondialdehyde) and antioxidant status of plasma (thiols and catalase), TNF-α, MMP-2 and MMP-9 serum levels were evaluated.
RESULTS
An improvement in oxidative stress, antioxidant status, and TNF-α, MMP-2 and MMP-9 levels was obtained in groups pretreated with LCC compared to silymarin treatment, in a dose-dependent manner. Histopathological examination reinforced the results.
CONCLUSION
Liposomal curcumin improves the oxidative stress/antioxidant balance and alleviates inflammation in experimental APAP-induced hepatotoxicity.
Collapse