1
|
Asar TO, Al-Abbasi FA, Sheikh RA, Zeyadi MAM, Nadeem MS, Naqvi S, Kumar V, Anwar F. Metformin's dual impact on Gut microbiota and cardiovascular health: A comprehensive analysis. Biomed Pharmacother 2024; 178:117128. [PMID: 39079259 DOI: 10.1016/j.biopha.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/25/2024] Open
Abstract
Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and β-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.
Collapse
Affiliation(s)
- Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India.
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol 2022; 13:975367. [PMID: 36110847 PMCID: PMC9470149 DOI: 10.3389/fimmu.2022.975367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The CCL2-CCR2 axis is one of the major chemokine signaling pathways that has received special attention because of its function in the development and progression of cardiovascular disease. Numerous investigations have been performed over the past decades to explore the function of the CCL2-CCR2 signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2 axis for cardiovascular disease have shown satisfactory outcomes, yet its clinical translation remains challenging. In this article, we describe the mechanisms of action of the CCL2-CCR2 axis in the development and evolution of cardiovascular diseases including heart failure, atherosclerosis and coronary atherosclerotic heart disease, hypertension and myocardial disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway as a targeted therapy for cardiovascular diseases are summarized. The potential of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
Collapse
Affiliation(s)
- Haixia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianqian Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weilong Cao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Zhihao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| |
Collapse
|
3
|
Effects of Diazepam on Hematological and Histological Parameters in Rats / in Vivo and Unbiased Stereological Investigation. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diazepam-based drugs are widely used today in human treatment. Diazepam may be a primary drug aimed at treating neurological diseases or an associated drug in the treatment of other diseases in the purpose of symptomatic therapy. The sedative effect of diazepam characterizes it as a drug that people usually use on their own and without a doctor’s supervision. Directly, but also through influencing the nervous system, diazepam disrupts proper functioning of all body organs. The purpose of this paper was to examine the effects of diazepam on blood and cytohistological parameters of rats in an in vivo experiment. Mallory-Azan and immunochistochemical staining methods BLX-CX and Survivin tissues of liver, kidney and spleen of rats were used to achieve the set goal. Cytometric analysis of rats detected cells in apoptosis and measurements of stereological parameters were made using a system according to Cavalier’s principle. Results of analysis of hematological and histological parameters indicate a detrimental effect of diazepam on blood parameters, as well as on structure and functioning of the liver, kidneys and spleen of rats. This paper is a foundation for further detailed scientific research with the aim of elucidating all harmful effects that diazepam has on all organs in the body of rats. This data could serve as a starting point for future studies in clinical pharmacology on therapeutic protocols for usage of diazepam-based sedatives.
Collapse
|
4
|
Zeng X, Gong H, Zhang L, Lan Y, Yang S, Xu F. Bisacurone Ameliorated Pressure Overload-Induced Cardiac Hypertrophy in Experimental Rats Through Inhibition of Oxidative Stress and Bax/Caspase-3 Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.415.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Jiang T, Ma X, Chen H, Jia H, Xiong Y. Diazepam ameliorated myocardial ischemia-reperfusion injury via inhibition of C-C chemokine receptor type 2/Tumor necrosis factor-alpha/Interleukins and Bcl-2-associated X protein/Caspase-3 pathways in experimental rats. J Vet Med Sci 2021; 83:1965-1976. [PMID: 34719607 PMCID: PMC8762406 DOI: 10.1292/jvms.21-0344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (IRI) is one of the most leading concerns for
public health globally. Diazepam, a local anesthetic, has been reported for its
cardioprotective potential. The present investigation aimed to evaluate the possible
mechanism of action of diazepam against left anterior descending ligation-induced
myocardial IRI in experimental rats. IRI was induced in healthy male rats by ligating
coronary artery for 30 min and then reperfused for 60 min. The animals were pre-treated
with either vehicle or diltiazem (10 mg/kg) or diazepam (1, 2.5, and 5 mg/kg) for 14 days.
Compared to the IRI group, diazepam (2.5 and 5 mg/kg) markedly
(P<0.05) attenuated IRI-induced alterations in cardiac function and
oxido-nitrosative stress. In addition, diazepam prominently (P<0.05)
improved cardiac Na+K+ATPase, Ca2+ATPase levels and
hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expression. It also significantly
(P<0.05) down-regulated cardiac mRNA expressions of cardiac troponin
I (cTn-I), C-C chemokine receptor type 2 (CCR2), tumor necrosis factor-alpha (TNF-α),
interleukins (IL)-1β, and IL-6. In western blot analysis, IRI-induced myocardial apoptosis
was reduced by diazepam treatment reflected by a marked (P<0.05)
decreased in Bcl-2-associated X protein (Bax) and Caspase-3 protein expression. Diazepam
also efficiently (P<0.05) improved IRI-induced histological aberration
in cardiac tissue. In conclusion, diazepam exerts cardioprotective effect by inhibiting
inflammatory release (CCR2, TNF-α, and ILs), oxido-nitrosative stress, and apoptosis (Bax
and Caspase-3) pathway during myocardial IRI in experimental rats.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xiong
- Department of Anesthesiology, 3201 Hospital
| |
Collapse
|
6
|
Muto NA, Hamoy M, Rodrigues Lucas DC, Teixeira BB, Santos Almeida AF, de Castro Navegantes T, de Sousa Ferreira de Sá VS, de Moraes BP, do Vale Medeiros JP, Dos Santos YA, da Rocha CQ, de Mello VJ, Rogez H. Myorelaxation, respiratory depression and electrocardiographic changes caused by the administration of extract of açai ( Euterpe oleracea Mart.) stone in rats. Toxicol Rep 2021; 8:829-838. [PMID: 33868963 PMCID: PMC8044785 DOI: 10.1016/j.toxrep.2021.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/01/2022] Open
Abstract
The biological and pharmacological properties of natural polyphenols of the extract of Euterpe oleracea stone (EEOS) are associated with the central nervous system (CNS). To investigate the sedative and myorelaxant activity of EEOS in vivo, this study aimed to present the myorelaxant and sedative effects of EEOS in Wistar rats using spontaneous locomotor activity and motor electrophysiology. A total of 108 animals were used in the following experiments: a) behavioral tests (n = 27); b) electromyographic recordings of skeletal muscle (n = 27); c) respiratory muscle activity recordings (n = 27); d) cardiac muscle activity recordings (n = 27). The behavioral characteristics were measured according to the latency time of onset, the transient loss of posture reflex and maximum muscle relaxation. Electrodes were implanted in the gastrocnemius muscle and in the tenth intercostal space for electromyographic (EMG) signal capture to record muscle contraction, and in the D2 lead for electrocardiogram acquisition. After using the 300 mg/kg dose of EEOS intraperitoneally, a myorelaxant activity exhibited a lower frequency of contractility with an amplitude pattern of low and short duration at gastrocnemius muscle and intercostal muscle, which clearly describes a myorelaxant activity and changes in cardiac activity. The present report is so far the first study to demonstrate the myorelaxant activity of this extract, indicating an alternative route for açai stone valorization and its application in pharmaceutical fields.
Collapse
Key Words
- ACB, abdominal-costal breathing
- CNS, Central Nervous System
- DMACA, p-dimethylaminocinnamaldehyde
- DZP, diazepam
- ECG
- EEOS, extract of E. oleracea stone
- EMG
- EMG, electromyographic
- EMGs, electromyographs
- ESI-IT-MS, Electrospray ionization Ion-Trap Mass spectrometry
- Euterpe oleracea
- GABAA, γ-aminobutyric acid type A
- HPLC, High Performance Liquid Chromatography
- Myorelaxant
- RC, Respiratory Control
- RD, respiratory depression
- RPR, Rhythmic and Profound Respiration
- Sedative
- mg CAE/g DE, milligrams of catechin equivalents per gram of dried extract
- mg CE/g DE, milligrams of cyanidin equivalents per gram of dried extract
- mg GAE/g DE, milligrams of gallic acid equivalents per gram of dried extract
- mg MRE/g DE, miligrams of myricetin-3-O-α-l-rhamnopyranoside equivalents per gram of dried extract
Collapse
Affiliation(s)
- Nilton Akio Muto
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, ICB-UFPA, Brazil
| | | | - Bruno Brito Teixeira
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | - Hervé Rogez
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| |
Collapse
|
7
|
Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicol Rep 2020; 7:1178-1186. [PMID: 32995293 PMCID: PMC7501485 DOI: 10.1016/j.toxrep.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (CP) is a powerful antineoplastic chemotherapeutic agent with broad-spectrum properties. Acute and cumulative cardiotoxicity are major limiting factors for CP therapy. Various pathogenic pathways have been suggested to CP-induced cardiotoxicity; oxidative damage, ER stress, and programmed cell death/apoptosis. The present study aimed to assess the signaling mechanisms related to the advantageous effects of rosuvastatin (RSV) and simvastatin (SMV) against CP-related cardiac ER stress dependent apoptotic death in rats. Acute cardiotoxicity was induced by a single dose of CP (10 mg/kg, i.p.) on the 10th day of the experiment. RSV (10 mg/ kg/day) and SMV (10 mg/kg/day) were orally administered for 15 days. CP-treated rats showed significant alterations in electrocardiographic recordings and elevation in serum cardiac function biomarkers; troponin T content, lactate dehydrogenase and creatine kinase-MB levels as well as boost in the cardiac oxidative stress biomarkers. In addition, CP exposure resulted in GRP78 induction; an ER stress and elevation marker at calpain-1 content as well as activation of activated caspase-3 (ACASP3) and caspase-12 were reflected on CP-triggered apoptosis evidenced by elevation in the Bax/Bcl-2 ratio. However, RSV and SMV administration mitigate those adverse CP effects. Statins administration prominently alleviated CP-induced cardiac abnormalities exerting improvement in the ECG pattern and cardiac enzyme biomarkers. Interestingly, statins; RSV and SMV, disrupted CP-induced ER stress and the consequent apoptotic cell death evidenced by downregulation of ER-chaperone GRP78, calpain-1, ACASP3 and caspase-12 as well as decline in the Bax/Bcl-2 ratio. From all the previous findings, it can be suggested that statins namely; RSV and SMV, play protective role against CP-induced cardiac injury by regulating ER stress-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Dalia O Saleh
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Dina F Mansour
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Rasha E Mostafa
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| |
Collapse
|