1
|
Ranjan H, Senthil Kumar S, Priscilla S, Swaminathan S, Umezawa M, Sheik Mohideen S. Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2203-2214. [PMID: 39484827 DOI: 10.1039/d4em00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using Drosophila melanogaster, fruit flies, as a model organism. Drosophila were exposed to PE MPs orally at concentrations of 1 mg ml-1 and 10 mg ml-1 agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activity. The expression levels of key genes (Hsp70Bc, rpr, and p53) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of rpr, p53, and Hsp70Bc genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on Drosophila, including behavioural impairment, oxidative stress, and activation of stress response pathways.
Collapse
Affiliation(s)
- Himanshu Ranjan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Swetha Senthil Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Sharine Priscilla
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Subhashini Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| |
Collapse
|
2
|
Arenhoevel J, Kuppe A, Addante A, Wei LF, Boback N, Butnarasu C, Zhong Y, Wong C, Graeber SY, Duerr J, Gradzielski M, Lauster D, Mall MA, Haag R. Thiolated polyglycerol sulfate as potential mucolytic for muco-obstructive lung diseases. Biomater Sci 2024; 12:4376-4385. [PMID: 39028033 DOI: 10.1039/d4bm00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Increased disulfide crosslinking of secreted mucins causes elevated viscoelasticity of mucus and is a key determinant of mucus dysfunction in patients with cystic fibrosis (CF) and other muco-obstructive lung diseases. In this study, we describe the synthesis of a novel thiol-containing, sulfated dendritic polyglycerol (dPGS-SH), designed to chemically reduce these abnormal crosslinks, which we demonstrate with mucolytic activity assays in sputum from patients with CF. This mucolytic polymer, which is based on a reportedly anti-inflammatory polysulfate scaffold, additionally carries multiple thiol groups for mucolytic activity and can be produced on a gram-scale. After a physicochemical compound characterization, we compare the mucolytic activity of dPGS-SH to the clinically approved N-acetylcysteine (NAC) using western blot studies and investigate the effect of dPGS-SH on the viscoelastic properties of sputum samples from CF patients by oscillatory rheology. We show that dPGS-SH is more effective than NAC in reducing multimer intensity of the secreted mucins MUC5B and MUC5AC and demonstrate significant mucolytic activity by rheology. In addition, we provide data for dPGS-SH demonstrating a high compound stability, low cytotoxicity, and superior reaction kinetics over NAC at different pH levels. Our data support further development of the novel reducing polymer system dPGS-SH as a potential mucolytic to improve mucus function and clearance in patients with CF as well as other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Justin Arenhoevel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| | - Aditi Kuppe
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Annalisa Addante
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Ling-Fang Wei
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Nico Boback
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Cosmin Butnarasu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Yinan Zhong
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| | - Christine Wong
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Simon Y Graeber
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Julia Duerr
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Michael Gradzielski
- Technische Universität Berlin, Institute of Chemistry, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Lauster
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Marcus A Mall
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Joshi N, Yan J, Dang M, Slaughter K, Wang Y, Wu D, Ung T, Pandya V, Chen MX, Kaur S, Bhagchandani S, Alfassam HA, Joseph J, Gao J, Dewani M, Yip RCS, Weldon E, Shah P, Shukla C, Sherman NE, Luo JN, Conway T, Eickhoff JP, Botelho L, Alhasan AH, Karp JM, Ermann J. A Mechanically Resilient Soft Hydrogel Improves Drug Delivery for Treating Post-Traumatic Osteoarthritis in Physically Active Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594611. [PMID: 38826308 PMCID: PMC11142096 DOI: 10.1101/2024.05.16.594611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intra-articular delivery of disease-modifying osteoarthritis drugs (DMOADs) is likely to be most effective in early post-traumatic osteoarthritis (PTOA) when symptoms are minimal and patients are physically active. DMOAD delivery systems therefore must withstand repeated mechanical loading without affecting the drug release kinetics. Although soft materials are preferred for DMOAD delivery, mechanical loading can compromise their structural integrity and disrupt drug release. Here, we report a mechanically resilient soft hydrogel that rapidly self-heals under conditions resembling human running while maintaining sustained release of the cathepsin-K inhibitor L-006235 used as a proof-of-concept DMOAD. Notably, this hydrogel outperformed a previously reported hydrogel designed for intra-articular drug delivery, used as a control in our study, which neither recovered nor maintained drug release under mechanical loading. Upon injection into mouse knee joints, the hydrogel showed consistent release kinetics of the encapsulated agent in both treadmill-running and non-running mice. In a mouse model of aggressive PTOA exacerbated by treadmill running, L-006235 hydrogel markedly reduced cartilage degeneration. To our knowledge, this is the first hydrogel proven to withstand human running conditions and enable sustained DMOAD delivery in physically active joints, and the first study demonstrating reduced disease progression in a severe PTOA model under rigorous physical activity, highlighting the hydrogel's potential for PTOA treatment in active patients.
Collapse
|
4
|
Chen F, Wang Q, Xiao M, Lou D, Wufur R, Hu S, Zhang Z, Wang Y, Zhang Y. A novel crosstalk between Nrf2 and Smad2/3 bridged by two nuanced Keap1 isoforms with their divergent effects on these distinct family transcription factors. Free Radic Biol Med 2024; 213:190-207. [PMID: 38242246 DOI: 10.1016/j.freeradbiomed.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The Keap1-Nrf2 signalling to transcriptionally regulate antioxidant response element (ARE)-driven target genes has been accepted as key redox-sensitive pathway governing a vast variety of cellular stresses during healthy survival and disease development. Herein, we identified two nuanced isoforms α and β of Keap1 in HepG2 cells, arising from its first and another in-frame translation starting codons, respectively. In identifying those differential expression genes monitored by Keap1α and/or Keap1β, an unusual interaction of Keap1 with Smad2/3 was discovered by parsing transcriptome sequencing, Keap1-interacting protein profiling and relevant immunoprecipitation data. Further examination validated that Smad2/3 enable physical interaction with Keap1, as well as its isoforms α and β, by both EDGETSD and DLG motifs in the linker regions between their MH1 and MH2 domains, such that the stability of Smad2/3 and transcriptional activity are enhanced with their prolonged half-lives and relevant signalling responses from the cytoplasmic to nuclear compartments. The activation of Smad2/3 by Keap1, Keap1α or Keap1β was much likely contributable to a coordinative or another competitive effect of Nrf2, particularly in distinct Keap1-based cellular responses to its cognate growth factor (i.e. TGF-β1) or redox stress (e.g. stimulated by tBHQ and DTT). Overall, this discovery presents a novel functional bridge crossing the Keap1-Nrf2 redox signalling and the TGF-β1-Smad2/3 pathways so as to coordinately regulate the healthy growth and development.
Collapse
Affiliation(s)
- Feilong Chen
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402262, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Qing Wang
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402262, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Mei Xiao
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Reziyamu Wufur
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402262, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Shaofan Hu
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Yeqi Wang
- College of Bioengineering and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402262, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 40044, China.
| |
Collapse
|
5
|
Yu X, Li Y, Tian X, Zang X, Yang S, Qiao H, Zhu C, Moussian B, Wang Y. Pb exposure causes non-linear accumulation of Pb in D. melanogaster controlled by metallothionein B and exerts ecological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165680. [PMID: 37499811 DOI: 10.1016/j.scitotenv.2023.165680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pb pollution can harm human health and the ecosystem. Therefore, it is worthwhile to study the metabolic processes of heavy metals in individual bodies and their influence on ecological systems. In this work, we analyzed the genetic responses and physiological changes of D. melanogaster which took diets exposed to different doses of Pb using transcriptomic analysis, ICP-MS, and various other physiological methods. We found that the Pb accumulated in D. melanogaster in a nonlinear pattern with the increase of Pb content in food. Metallothioneins (Mtns), especially the MtnB directly affects the accumulation and excretion of metal Pb in D. melanogaster, and causes the nonlinear accumulation. Metal regulatory transcription factor-1 (MTF-1) is involved in the regulation of Pb-induced high expressions of Mtns. Furthermore, an interaction between the metal metabolism pathway and xenobiotic response pathway leads to the cross-tolerances of Pb-exposed D. melanogaster to insecticides and other toxins. The oxidative stress induced by Pb toxicity may be the bridge between them. Our findings provide a physiological and molecular genetic basis for further study of the accumulation and metabolism of Pb in D. melanogaster.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiaohan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Shuyu Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
6
|
Pullmann-Lindsley H, Bartlett-Miller A, Pitts RJ. Diols and sugar substitutes in attractive toxic sugar baits targeting Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1022-1029. [PMID: 37348932 DOI: 10.1093/jme/tjad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Around the world, mosquitoes continue to transmit disease-causing pathogens and develop resistance to insecticides. We previously discovered that a generally regarded as safe (GRAS) compound, 1,2-propanediol, reduces adult mosquito survivorship when ingested. In this study, we assess and compare 5 more chemically related compounds for mosquito lethality and 8 GRAS sugar substitutes to determine toxicity. We conducted a series of feeding assays to determine if ingesting the compounds influenced mosquito mean survivorship in locally collected lab-reared populations of Aedes aegypti (Diptera, Culicidae, Linnaeus, 1762) and Aedes albopictus (Diptera, Culicidae, Skuse, 1894) mosquitoes. Our results indicate that 1,2-propanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, DL-dithiothreitol, acesulfame potassium, allulose, erythritol, sodium saccharin, stevia, and sucralose significantly reduced the mean survivorship of one or both species. Short-term trials with the most toxic compounds revealed that they could substantially affect survivorship after 24 h. We also found that there were different responses in the 2 species and that in several experimental conditions, male mosquitoes expired to a greater extent than female mosquitoes. These findings indicate that several of the compounds are toxic to mosquitoes. Further study is required to determine their effectiveness in attractive toxic sugar baits (ATSBs) as a potential component of population control strategies.
Collapse
Affiliation(s)
| | - Ava Bartlett-Miller
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| |
Collapse
|
7
|
Nafis MMH, Quach ZM, Al-Shaarani AAQA, Muafa MHM, Pecoraro L. Pathogenicity of Aspergillus Airborne Fungal Species Collected from Indoor and Outdoor Public Areas in Tianjin, China. Pathogens 2023; 12:1154. [PMID: 37764962 PMCID: PMC10534727 DOI: 10.3390/pathogens12091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different indoor and outdoor environments in Tianjin University were tested for pathogenicity on Drosophila melanogaster. Airborne fungi were sampled using an HAS-100B air sampler, over a one-year sampling period. Isolated fungal strains were identified based on morphological and molecular analysis. The Aspergillus-centered study was conducted as part of a larger work focusing on the total airborne fungal community in the analyzed environments, which yielded 173 fungal species. In this context, the genus Aspergillus showed the second-highest species richness, with 14 isolated species. Pathogenicity tests performed on male adults of Drosophila melanogaster through a bodily contact bioassay showed that all analyzed airborne Aspergillus species were pathogenic to fruit flies, with high insect mortality rates and shortened lifespan. All the studied fungi induced 100% mortality of fruit flies within 30 culture days, with one exception constituted by A. creber (39 days), while the shortest lifespan (17 days) was observed in fruit flies treated with A. tubingensis. Our results allow us to hypothesize that the studied airborne fungal species may have a pathogenic effect on humans, given the affinity between fruit flies and the human immune system, and may help to explain the health risk linked with Aspergillus fungi exposure in densely populated environments.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
8
|
Fraternale A, De Angelis M, De Santis R, Amatore D, Masini S, Monittola F, Menotta M, Biancucci F, Bartoccini F, Retini M, Fiori V, Fioravanti R, Magurano F, Chiarantini L, Lista F, Piersanti G, Palamara AT, Nencioni L, Magnani M, Crinelli R. Targeting SARS-CoV-2 by synthetic dual-acting thiol compounds that inhibit Spike/ACE2 interaction and viral protein production. FASEB J 2023; 37:e22741. [PMID: 36583713 PMCID: PMC9880737 DOI: 10.1096/fj.202201157rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.
Collapse
Affiliation(s)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | - Sofia Masini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Monittola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Raoul Fioravanti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Magurano
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Chiarantini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Anna T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
9
|
Gao L, Zang X, Qiao H, Moussian B, Wang Y. Xenobiotic responses of Drosophila melanogaster to insecticides with different modes of action and entry. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21958. [PMID: 35942563 DOI: 10.1002/arch.21958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Depending on their chemical structure, insecticides enter the insect body either through the cuticle or by ingestion (mode of entry [MoE]), and, naturally, harm or even kill insects through different mechanisms (modes of action). In parallel, they trigger a systemic detoxification response, especially by activation of detoxification gene expression. We monitored the acute genetic alterations of known xenobiotic response target genes against five different insecticides with two most common MoEs (contact toxicity and stomach toxicity), found that: 1. only a few genes were detected responding to acute exposure to insecticides (LD90 ); 2. The expression of cyp12d1 was upregulated in all experiments, except for dichlorodiphenyltrichloroethane exposure, suggesting that cyp12d1 is a general first response gene of the xenobiotic response; 3. The contact and stomach entries did not show any notable difference, both MoEs induced the response of JNK signaling pathway, possibly serving as the driver of the response of cyp12d1 and a few other genes. In conclusion, the changes in gene expression levels were relatively modest and no significant differences were found between the two MoEs, so the insecticide entry route does not seem to have an impact on the detoxification response. However, the two MoEs of the same insecticide showed different efficiencies in our test. Thus, the study of these two MoEs will help to develop more efficient release and management methods for the use of such insecticides.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Parc Valrose, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Bartoccini F, Retini M, Crinelli R, Menotta M, Fraternale A, Piersanti G. Dithiol Based on l-Cysteine and Cysteamine as a Disulfide-Reducing Agent. J Org Chem 2022; 87:10073-10079. [PMID: 35862282 PMCID: PMC9361291 DOI: 10.1021/acs.joc.2c01050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis, chemical properties, and disulfide
bond-reducing
performance of a dithiol called NACMEAA, conceived as a hybrid of
two biologically relevant thiols: cysteine and cysteamine. NACMEAA
is conveniently prepared from inexpensive l-cystine in an
efficient manner. As a nonvolatile, highly soluble, and neutral compound
at physiological pH with the first thiol pKa value of 8.0, NACMEAA is reactive and user-friendly. We also demonstrate
that NACMEAA reduces disulfide bonds in GSSG and lysozyme.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
11
|
Yang W, Tu A, Ma Y, Li Z, Xu J, Lin M, Zhang K, Jing L, Fu C, Jiao Y, Huang L. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry. Molecules 2021; 27:173. [PMID: 35011406 PMCID: PMC8746959 DOI: 10.3390/molecules27010173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP-CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS-WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization.
Collapse
Affiliation(s)
- Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China;
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou 350309, China
| | - Anqianyi Tu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yuchen Ma
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Zhanming Li
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Jie Xu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Min Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China;
| | - Kailong Zhang
- The Marketing Department, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100071, China;
| | - Linzhi Jing
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Caili Fu
- Food Science and Technology Department, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China; (A.T.); (Y.M.); (Z.L.); (J.X.); (L.J.); (C.F.)
| | - Yang Jiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China;
| |
Collapse
|
12
|
Fooladvand F, Tahouri V, Baeeri M, Minaei T, Rahimifard M, Hodjat M, Khorasani R, Haghi-Aminjan H, Abdollahi M. Toxic potential of botulinum toxin type A on senescence in a Drosophila melanogaster model. Toxicol Rep 2021; 8:1576-1582. [PMID: 34458104 PMCID: PMC8379625 DOI: 10.1016/j.toxrep.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 10/31/2022] Open
Abstract
Botulinum toxin type-A (BoNT/A) application, especially neurological disorders, has been spread nowadays while it may cause side effects. The current study aimed to assess the BoNT/A dose-dependent effect on induction of aging in the Drosophila melanogaster model. The third instar larvae of Drosophila melanogaster were exposed to ¼ LC50, ½ LC50, and LC50 of BoNT/A in the Drosophila diet for 48 h while H2O2 1% was used as a positive control. After the exposure time, some larvae were collected for molecular study, including gene expression analysis, comet assay, oxidative stress markers, and the phenotype changes. BoNT/A induced dose-dependent cytotoxicity, elevated reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) enzyme activity. In addition, it caused DNA damage and activated caspase-3 and -9, and reduced the body size of the fly, especially in high doses. In line with the purpose of the study, aging markers, including β-galactosidase (β-gal), p16, p21, p38, and p53, were up-regulated by BoNT/A low dose. BoNT/A activates the aging pathway in the low dose, and increasing the dose induces toxicity, including oxidative stress, DNA damage, and apoptosis.
Collapse
Affiliation(s)
- Farnoosh Fooladvand
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Vida Tahouri
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tayebeh Minaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Khorasani
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|