1
|
K M, Aryan MK, Prabhakaran P, Mulakal JN, Das S S, IM K, Parameswara Panicker S. Short-term influence of Immufen™ on mild allergic rhinitis: a randomized, double-blind, placebo-controlled study. FRONTIERS IN ALLERGY 2024; 5:1390813. [PMID: 39469483 PMCID: PMC11513368 DOI: 10.3389/falgy.2024.1390813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Allergic rhinitis (AR) is an IgE-mediated reaction to inhaled allergens, and is a prominent health concern affecting approximately 400 million people worldwide. A comprehensive understanding of AR's pathophysiology is imperative for developing novel therapies, especially considering its frequent co-morbidity with asthma and conjunctivitis. The escalating prevalence of AR is correlated with increased urbanization and environmental pollutants, recognized as prominent contributing factors. Dysregulation in immune networks, Th1/Th2 cytokine imbalance, activation of mast cells and eosinophils are implicated in AR progression. Classic AR symptoms include nasal congestion, nasal itching, rhinorrhea, and sneezing which significantly impact the quality of life, social interactions, and workplace productivity. Methods This randomized, double-blind, placebo-controlled, three-arm, three-sequence study was aimed to assess the efficacy of supplementation of a co-delivery form of turmeric extract with ashwagandha extract (CQAB) in comparison with a bioavailable curcumin (CGM) and placebo in alleviating AR symptoms and enhancing the quality of life in individuals with mild AR. Participants received either placebo, CGM, or CQAB twice/day for 28 days, and subjective measures were recorded at the baseline and at the end of study. Results CQAB supplementation demonstrated a significant (P < 0.05) improvement in Total Nasal Symptom Score (TNSS) compared to placebo and CGM. Furthermore, CQAB administration resulted in enhanced sleep quality (P < 0.05) as evaluated by the BIS questionnaire, heightened energy levels, and decreased fatigue and overall mood disturbance (POMS-SF) compared to both placebo and CGM. Conclusion The results suggests that CQAB has the potential to be used as a dietary supplement in alleviating AR discomforts. Clinical Trial Registration https://ctri.nic.in/Clinicaltrials/login.php; Identifier CTRI/2021/01/030355.
Collapse
Affiliation(s)
- Mamatha K
- Department of General Medicine, Divakar’s Specialty Hospital, Bengaluru, India
| | | | | | | | - Syam Das S
- R&D Centre, Akay Natural Ingredients, Kochi, India
| | | | - Sreejith Parameswara Panicker
- Department of Zoology, Advanced Centre for Regenerative Medicine and Stem Cell Research in Cutaneous Biology (AcREM-STEM), University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
2
|
Bival Štefan M. Astragalus membranaceus, Nigella sativa, and Perilla frutescens as Immunomodulators-Molecular Mechanisms and Clinical Effectiveness in Allergic Diseases. Curr Issues Mol Biol 2024; 46:9016-9032. [PMID: 39194750 DOI: 10.3390/cimb46080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Plants are the source of numerous remedies in modern medicine, and some of them have been studied due to their potential immunomodulatory activity. Astragalus membranaceus Fisch. ex Bunge (A. membranaceus), Nigella sativa L. (N. sativa), and Perilla frutescens (L.) Britton (P. frutescens) are plant species used in traditional medicine for the treatment of various diseases. Their potential to act as immunomodulatory, anti-inflammatory, and anti-allergic agents makes them interesting for investigating their clinical potential in alleviating the symptoms of allergic diseases. Allergy affects a large number of people; according to some sources more than 30% of the world population suffer from some type of allergic reaction, with pollen allergy as the most common type. Treatment is usually pharmacological and may not be completely effective or have side effects. Thus, we are seeking traditional medicine, mostly medicinal plants, with promising potential for alleviating allergy symptoms. A literature overview was conducted employing databases such as Scopus, PubMed, Web of Science, Springer, and Google Scholar. This manuscript summarizes recent in vivo preclinical and clinical studies on three species with immunomodulatory activity, provides a comparison of their anti-allergic effects, and underlines the potential of their application in clinical practice. The obtained results confirmed their efficacy in the in vivo and clinical studies, but also emphasize the problem of phytochemical characterization of the species and difference between tested doses. More clinical trials with standardized protocols (defined active molecules, dosage, side effects) are required to obtain safe and effective herbal drugs.
Collapse
Affiliation(s)
- Maja Bival Štefan
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby I, Ardakani A. Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone. Curr Issues Mol Biol 2024; 46:6600-6619. [PMID: 39057035 PMCID: PMC11276303 DOI: 10.3390/cimb46070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
Collapse
Affiliation(s)
- Reem Fawaz Abutayeh
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Maram Altah
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Amani Mehdawi
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Israa Al-Ataby
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Adel Ardakani
- College of Pharmacy, Amman Arab University, Amman 11953, Jordan;
| |
Collapse
|
4
|
Al-Rabia MW, Asfour HZ, Alhakamy NA, Abdulaal WH, Ibrahim TS, Abbas HA, Salem IM, Hegazy WAH, Nazeih SI. Thymoquinone is a natural antibiofilm and pathogenicity attenuating agent in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1382289. [PMID: 38638827 PMCID: PMC11024287 DOI: 10.3389/fcimb.2024.1382289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Pseudomonas aeruginosa belongs to the critical pathogens that represent a global public health problem due to their high rate of resistance as listed by WHO. P. aeruginosa can result in many nosocomial infections especially in individuals with compromised immune systems. Attenuating virulence factors by interference with quorum sensing (QS) systems is a promising approach to treat P. aeruginosa-resistant infections. Thymoquinone is a natural compound isolated from Nigella sativa (black seed) essential oil. In this study, the minimum inhibitory concentration of thymoquinone was detected followed by investigating the antibiofilm and antivirulence activities of the subinhibitory concentration of thymoquinone against P. aeruginosa PAO1. The effect of thymoquinone on the expression of QS genes was assessed by quantitative real-time PCR, and the protective effect of thymoquinone against the pathogenesis of PAO1 in mice was detected by the mouse survival test. Thymoquinone significantly inhibited biofilm, pyocyanin, protease activity, and swarming motility. At the molecular level, thymoquinone markedly downregulated QS genes lasI, lasR, rhlI, and rhlR. Moreover, thymoquinone could protect mice from the pathologic effects of P. aeruginosa increasing mouse survival from 20% to 100%. In conclusion, thymoquinone is a promising natural agent that can be used as an adjunct therapeutic agent with antibiotics to attenuate the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ibrahim M. Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| | - Shaimaa I. Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Mohan ME, Mohan MC, Prabhakaran P, Syam Das S, Krishnakumar IM, Baby Chakrapani PS. Exploring the short-term influence of a proprietary oil extract of black cumin ( Nigella sativa) on non-restorative sleep: a randomized, double-blinded, placebo-controlled actigraphy study. Front Nutr 2024; 10:1200118. [PMID: 38288065 PMCID: PMC10822901 DOI: 10.3389/fnut.2023.1200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nigella sativa (black cumin, or black seed) is popularly known as the seed of blessings in the Arab system of medicine. Though not widely recommended for sleep, a unique proprietary black cumin extract (BlaQmax®/ThymoDream™; BCO-5) has been shown to be helpful in the management of stress and sleep issues. Methods This randomized, double-blind, placebo-controlled trial aimed to investigate the efficacy of BCO-5 on the sleep quality of volunteers characterized with a self-reported non-restorative sleep disorder. Healthy male and female participants (n = 70), aged 18-65 years (BMI 22-28 Kg/m2) were randomized to either placebo or BCO-5 (n = 35/group). Both interventions were supplemented at 200 mg/day for seven days. Actigraphy and a validated restorative sleep questionnaire (RSQ-W) were used to monitor the influence of BCO-5 on sleep. Results Compared to placebo, BCO-5 significantly improved sleep quality, as evidenced by both intra-group and inter-group analyses of the actigraphy data. The relative improvements observed were sleep efficiency (7.8%, p < 0.001), total sleep time (19.1%, p < 0.001), sleep onset latency (35.4%; p < 0.001), and wake-after-sleep-onset (22.5%; p < 0.001) compared with placebo. BCO-5 also improved sleep by 75.3% compared to baseline (p < 0.001) and by 68.9% compared to placebo (p < 0.001), when monitored by RSQ-W. BCO-5 was well-tolerated with no reports of side effects or toxicity. Conclusion BCO-5 significantly improved non-restorative sleep in seven days, indicating its potential role as a natural sleep aid.
Collapse
Affiliation(s)
- M. E. Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Kengeri, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - S. Syam Das
- R&D Centre, Akay Natural Ingredients, Cochin, Kerala, India
| | | | - P. S. Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
- Centre of Excellence in Neurodegeneration and Brain Health, Cochin, Kerala, India
| |
Collapse
|
8
|
Ibrahim KG, Hudu SA, Jega AY, Taha A, Yusuf AP, Usman D, Adeshina KA, Umar ZU, Nyakudya TT, Erlwanger KH. Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1214-1227. [PMID: 39229585 PMCID: PMC11366942 DOI: 10.22038/ijbms.2024.77203.16693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/06/2024] [Indexed: 09/05/2024]
Abstract
Metabolic syndrome (MetS) is a widespread global epidemic that affects individuals across all age groups and presents a significant public health challenge. Comprising various cardio-metabolic risk factors, MetS contributes to morbidity and, when inadequately addressed, can lead to mortality. Current therapeutic approaches involve lifestyle changes and the prolonged use of pharmacological agents targeting the individual components of MetS, posing challenges related to cost, compliance with medications, and cumulative side effects. To overcome the challenges associated with these conventional treatments, herbal medicines and phytochemicals have been explored and proven to be holistic complements/alternatives in the management of MetS. Thymoquinone (TQ), a prominent bicyclic aromatic compound derived from Nigella sativa emerges as a promising candidate that has demonstrated beneficial effects in the treatment of the different components of MetS, with a good safety profile. For methodology, literature searches were conducted using PubMed and Google Scholar for relevant studies until December 2023. Using Boolean Operators, TQ and the individual components of MetS were queried against the databases. The retrieved articles were screened for eligibility. As a result, we provide a comprehensive overview of the anti-obesity, anti-dyslipidaemic, anti-hypertensive, and anti-diabetic effects of TQ including some underlying mechanisms of action such as modulating the expression of several metabolic target genes to promote metabolic health. The review advocates for a paradigm shift in MetS management, it contributes valuable insights into the multifaceted aspects of the application of TQ, fostering an understanding of its role in mitigating the global burden of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo
| | | | - Ahmad Taha
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2254
| | | | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Physiology, Faculty of Medicine, Port-said University, Egypt
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria
| | - Zayyanu Usman Umar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Trevor Tapiwa Nyakudya
- Biomedical Science Research and Training Centre (BioRTC), Yobe State University, Damaturu, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
9
|
Kurowska N, Madej M, Strzalka-Mrozik B. Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer. Curr Issues Mol Biol 2023; 46:121-139. [PMID: 38248312 PMCID: PMC10814900 DOI: 10.3390/cimb46010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and is responsible for approximately one million deaths each year. The current standard of care is surgical resection of the lesion and chemotherapy with 5-fluorouracil (5-FU). However, of concern is the increasing incidence in an increasingly younger patient population and the ability of CRC cells to develop resistance to 5-FU. In this review, we discuss the effects of thymoquinone (TQ), one of the main bioactive components of Nigella sativa seeds, on CRC, with a particular focus on the use of TQ in combination therapy with other chemotherapeutic agents. TQ exhibits anti-CRC activity by inducing a proapoptotic effect and inhibiting proliferation, primarily through its effect on the regulation of signaling pathways crucial for tumor progression and oxidative stress. TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development. These data appear to be most relevant for co-treatment with 5-FU. We believe that TQ is a suitable candidate for consideration in the chemoprevention and adjuvant therapy for CRC, but further studies, including clinical trials, are needed to confirm its safety and efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| |
Collapse
|
10
|
Sheikhnia F, Rashidi V, Maghsoudi H, Majidinia M. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer. Cancer Cell Int 2023; 23:320. [PMID: 38087345 PMCID: PMC10717210 DOI: 10.1186/s12935-023-03174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/04/2023] [Indexed: 10/14/2024] Open
Abstract
Colorectal neoplasms are one of the deadliest diseases among all cancers worldwide. Thymoquinone (TQ) is a natural compound of Nigella sativa that has been used in traditional medicine against a variety of acute/chronic diseases such as asthma, bronchitis, rheumatism, headache, back pain, anorexia, amenorrhea, paralysis, inflammation, mental disability, eczema, obesity, infections, depression, dysentery, hypertension, gastrointestinal, cardiovascular, hepatic, and renal disorders. This review aims to present a detailed report on the studies conducted on the anti-cancer properties of TQ against colorectal cancer, both in vitro and in vivo. TQ stands as a promising natural therapeutic agent that can enhance the efficacy of existing cancer treatments while minimizing the associated adverse effects. The combination of TQ with other anti-neoplastic agents promoted the efficacy of existing cancer treatments. Further research is needed to acquire a more comprehensive understanding of its exact molecular targets and pathways and maximize its clinical usefulness. These investigations may potentially aid in the development of novel techniques to combat drug resistance and surmount the obstacles presented by chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol 2023; 45:9039-9059. [PMID: 37998744 PMCID: PMC10670084 DOI: 10.3390/cimb45110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a multifaceted process necessitating the collaboration of numerous elements to mend damaged tissue. Plant and animal-derived natural compounds have been utilized for wound treatment over the centuries, with many scientific investigations examining these compounds. Those with antioxidant, anti-inflammatory, and antibacterial properties are particularly noteworthy, as they target various wound-healing stages to expedite recovery. Thymoquinone, derived from Nigella sativa (N. sativa)-a medicinal herb with a long history of use in traditional medicine systems such as Unani, Ayurveda, Chinese, and Greco-Arabic and Islamic medicine-has demonstrated a range of therapeutic properties. Thymoquinone exhibits antimicrobial, anti-inflammatory, and antineoplastic activities, positioning it as a potential remedy for skin pathologies. This review examines recent research on how thymoquinone accelerates wound healing and the mechanisms behind its effectiveness. We carried out a comprehensive review of literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our aim was to gather relevant papers published between 2015 and August 2023. The main criteria for inclusion were that the articles had to be peer reviewed, original, written in English, and discuss the wound-healing parameters of thymoquinone in wound repair. Our review focused on the effects of thymoquinone on the cellular and molecular mechanisms involved in wound healing. We also examined the role of cytokines, signal transduction cascades, and clinical trials. We found sufficient evidence to support the effectiveness of thymoquinone in promoting wound healing. However, there is no consensus on the most effective concentrations of these substances. It is therefore essential to determine the optimal treatment doses and the best route of administration. Further research is also needed to investigate potential side effects and the performance of thymoquinone in clinical trials.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University, Jenin P.O. Box 240, Palestine
| | - Omar Said
- Beleaf Pharma, Kfar Kana 16930, Israel;
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel
- Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin P.O. Box 240, Palestine
| |
Collapse
|
12
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
14
|
Mohan ME, Thomas JV, Mohan MC, Das S S, Prabhakaran P, Pulikkaparambil Sasidharan BC. A proprietary black cumin oil extract ( Nigella sativa) (BlaQmax ®) modulates stress-sleep-immunity axis safely: Randomized double-blind placebo-controlled study. Front Nutr 2023; 10:1152680. [PMID: 37139438 PMCID: PMC10149792 DOI: 10.3389/fnut.2023.1152680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective Stress, sleep, and immunity are important interdependent factors that play critical roles in the maintenance of health. It has been established that stress can affect sleep, and the quality and duration of sleep significantly impact immunity. However, single drugs capable of targeting these factors are limited because of their multi-targeting mechanisms. The present study investigated the influence of a proprietary thymoquinone-rich black cumin oil extract (BCO-5) in modulating stress, sleep, and immunity. Methods A randomized double-blinded placebo-controlled study was carried out on healthy volunteers with self-reported non-refreshing sleep issues (n = 72), followed by supplementation with BCO-5/placebo at 200 mg/day for 90 days. Validated questionnaires, PSQI and PSS, were employed for monitoring sleep and stress respectively, along with the measurement of cortisol and melatonin levels. Immunity markers were analyzed at the end of the study. Results In the BCO-5 group, 70% of the participants reported satisfaction with their sleep pattern on day 7 and 79% on day 14. Additionally, both inter- and intra- group analyses of the total PSQI scores and component scores (sleep latency, duration, efficiency, quality, and daytime dysfunction) on days 45 and 90 showed the effectiveness of BCO-5 in the improvement of sleep (p < 0.05). PSS-14 analysis revealed a significant reduction in stress, upon both intra (p < 0.001) and inter-group (p < 0.001) comparisons. The observed reduction in stress among the BCO-5 group, with respect to the placebo, was significant with an effect size of 1.19 by the end of the study (p < 0.001). A significant correlation was also observed between improved sleep and reduced stress as evident from PSQI and PSS. Furthermore, there was a significant modulation in melatonin, cortisol, and orexin levels. Hematological/immunological parameters further revealed the immunomodulatory effects of BCO-5. Conclusion BCO-5 significantly modulated the stress-sleep-immunity axis with no side effects and restored restful sleep.
Collapse
Affiliation(s)
- Muttanahally Eraiah Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India
| | - Jestin V. Thomas
- Leads Clinical Research and Bio Services Private Limited, Bengaluru, Karnataka, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Syam Das S
- R&D Centre, Akay Natural Ingredients, Kochi, Kerala, India
| | | | - Baby Chakrapani Pulikkaparambil Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
15
|
Jarmakiewicz-Czaja S, Zielińska M, Helma K, Sokal A, Filip R. Effect of Nigella sativa on Selected Gastrointestinal Diseases. Curr Issues Mol Biol 2023; 45:3016-3034. [PMID: 37185722 PMCID: PMC10136991 DOI: 10.3390/cimb45040198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Nigella sativa L. (family Ranunculaceae), also known as black cumin, has been used in cuisine around the world for many years. Due to its health-promoting properties, it can be used not only in the food industry but also in medicine. The main bioactive compound contained in the black cumin extract is thymoquinone (TQ), which has a special therapeutic role. The results of research in recent years confirmed its hypoglycemic, hypolipemic, and hepatoprotective effects, among others. In addition, the results of laboratory tests also indicate its immunomodulatory and anticancer effects, although there is still a lack of data on the mechanisms of how they are involved in the fight against cancer. Including this plant material in one’s diet can be both an element of prophylaxis and therapy supporting the treatment process, including pharmacological treatment. However, attention should be paid to its potential interactions with drugs used in the treatment of chronic diseases.
Collapse
Affiliation(s)
| | - Magdalena Zielińska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
16
|
Li W. Dietary phytochemicals against COVID‐19: A focus on thymoquinone. EFOOD 2023. [DOI: 10.1002/efd2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Affiliation(s)
- Wen‐Wu Li
- School of Pharmacy and Bioengineering Keele University Stoke‐on‐Trent UK
| |
Collapse
|
17
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
18
|
Khaikin E, Chrubasik-Hausmann S, Kaya S, Zimmermann BF. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022; 14:3501. [PMID: 36079759 PMCID: PMC9460610 DOI: 10.3390/nu14173501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Thymoquinone (TQ) is the leading compound accounting for the pharmacological effects of Nigella sativa seed oil, also known as black seed oil. This study aimed to analyze the TQ content of commercial black seed oils and black seed oil-containing capsules to obtain information on the quality of the products and to find a promising and safe study medication for a putative clinical study. (2) Methods: Six black seed oils and five black seed oil-containing capsules were analyzed. TQ was quantified using a validated method consisting of a simple methanolic extraction and a fast HPLC-UV analysis. (3) Results: The TQ content varied from 3.08 to 809.4 mg/100 g (mean). The highest TQ content was found in a bottled oil, which might be considered for a clinical study. A dose of 4 mL of this oil per day contains 30 mg TQ, which is unlikely to be harmful. Based on the literature, a safe daily TQ dosage appears to be <48.6 mg per adult. (4) Conclusions: These findings suggest that black seed products should be regulated regarding TQ content to enable consumers to buy black seed food supplements of known content for the maintenance and improvement of health.
Collapse
Affiliation(s)
- Elisabeth Khaikin
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| | | | - Sebahat Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Benno F. Zimmermann
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| |
Collapse
|