1
|
Stolyarova AV, Nabieva E, Ptushenko VV, Favorov AV, Popova AV, Neverov AD, Bazykin GA. Senescence and entrenchment in evolution of amino acid sites. Nat Commun 2020; 11:4603. [PMID: 32929079 PMCID: PMC7490271 DOI: 10.1038/s41467-020-18366-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
Amino acid propensities at a site change in the course of protein evolution. This may happen for two reasons. Changes may be triggered by substitutions at epistatically interacting sites elsewhere in the genome. Alternatively, they may arise due to environmental changes that are external to the genome. Here, we design a framework for distinguishing between these alternatives. Using analytical modelling and simulations, we show that they cause opposite dynamics of the fitness of the allele currently occupying the site: it tends to increase with the time since its origin due to epistasis ("entrenchment"), but to decrease due to random environmental fluctuations ("senescence"). By analysing the genomes of vertebrates and insects, we show that the amino acids originating at negatively selected sites experience strong entrenchment. By contrast, the amino acids originating at positively selected sites experience senescence. We propose that senescence of the current allele is a cause of adaptive evolution.
Collapse
Affiliation(s)
- A V Stolyarova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.
| | - E Nabieva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - V V Ptushenko
- Department of Photochemistry and Photobiology, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
- A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A V Favorov
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Laboratory of System Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, 119991, Russia
| | - A V Popova
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology, Moscow, 111123, Russia
| | - A D Neverov
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology, Moscow, 111123, Russia
| | - G A Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| |
Collapse
|
2
|
Abstract
Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short ([Formula: see text] bp) distances in D. melanogaster and at long distances in D. pulex The study population adheres closely to the expectations under Hardy-Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies [Formula: see text] appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an [Formula: see text] higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations.
Collapse
|
3
|
Bazykin GA. Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins. Biol Lett 2016; 11:rsbl.2015.0315. [PMID: 26445980 DOI: 10.1098/rsbl.2015.0315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The fitness landscape-the function that relates genotypes to fitness-and its role in directing evolution are a central object of evolutionary biology. However, its huge dimensionality precludes understanding of even the basic aspects of its shape. One way to approach it is to ask a simpler question: what are the properties of a function that assigns fitness to each possible variant at just one particular site-a single position fitness landscape-and how does it change in the course of evolution? Analyses of genomic data from multiple species and multiple individuals within a species have proved beyond reasonable doubt that fitness functions of positions throughout the genome do themselves change with time, thus shaping protein evolution. Here, I will briefly review the literature that addresses these dynamics, focusing on recent genome-scale analyses of fitness functions of amino acid sites, i.e. vectors of fitnesses of 20 individual amino acid variants at a given position of a protein. The set of amino acids that confer high fitness at a particular position changes with time, and the rate of this change is comparable with the rate at which a position evolves, implying that this process plays a major role in evolutionary dynamics. However, the causes of these changes remain largely unclear.
Collapse
Affiliation(s)
- Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow 127051, Russia Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|