1
|
Pauli S, Berger H, Ufartes R, Borchers A. Comparing a Novel Malformation Syndrome Caused by Pathogenic Variants in FBRSL1 to AUTS2 Syndrome. Front Cell Dev Biol 2021; 9:779009. [PMID: 34805182 PMCID: PMC8602103 DOI: 10.3389/fcell.2021.779009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently reported to cause a novel malformation and intellectual disability syndrome. The clinical spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal anomalies and contractures, postnatal growth retardation, global developmental delay as well as respiratory problems, hearing impairment and heart defects. The function of FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndrome with microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show additional symptoms like heart defects and contractures overlapping with the phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function, depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and PRC1.5. These complexes have essential roles in developmental processes, cellular differentiation and proliferation by regulating gene expression via histone modification. In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1 in respect to previously published data on AUTS2 to gain further insights into its molecular function, its role in development as well as its impact on human genetics.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| | - Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Arbabian A, Iftinca M, Altier C, Singh PP, Isambert H, Coscoy S. Mutations in calmodulin-binding domains of TRPV4/6 channels confer invasive properties to colon adenocarcinoma cells. Channels (Austin) 2021; 14:101-109. [PMID: 32186440 PMCID: PMC7153789 DOI: 10.1080/19336950.2020.1740506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential (TRP) channels form a family of polymodal cation channels gated by thermal, mechanical, or chemical stimuli, with many of them involved in the control of proliferation, apoptosis, or cell cycle. From an evolutionary point of view, TRP family is characterized by high conservation of duplicated genes originating from whole-genome duplication at the onset of vertebrates. The conservation of such “ohnolog” genes is theoretically linked to an increased probability of generating phenotypes deleterious for the organism upon gene mutation. We aimed to test experimentally the hypothesis that TRP mutations, in particular gain-of-function, could be involved in the generation of deleterious phenotypes involved in cancer, such as gain of invasiveness. Indeed, a number of TRP channels have been linked to cancer progression, and exhibit changes in expression levels in various types of cancers. However, TRP mutations in cancer have been poorly documented. We focused on 2 TRPV family members, TRPV4 and TRPV6, and studied the effect of putative gain-of-function mutations on invasiveness properties. TRPV channels have a C-terminal calmodulin-binding domain (CaMBD) that has important functions for regulating protein function, through different mechanisms depending on the channel (channel inactivation/potentiation, cytoskeleton regulation). We studied the effect of mutations mimicking constitutive phosphorylation in TRPV4 and TRPV6 CaMBDs: TRPV4 S823D, S824D and T813D, TRPV6 S691D, S692D and T702. We found that most of these mutants induced a strong gain of invasiveness of colon adenocarcinoma SW480 cells, both for TRPV4 and TRPV6. While increased invasion with TRPV6 S692D and T702D mutants was correlated to increased mutant channel activity, it was not the case for TRPV4 mutants, suggesting different mechanisms with the same global effect of gain in deleterious phenotype. This highlights the potential importance to search for TRP mutations involved in cancer.
Collapse
Affiliation(s)
- Atousa Arbabian
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Mircea Iftinca
- Department of Physiology and Pharmacology. Inflammation Research Network, Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology. Inflammation Research Network, Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Canada
| | - Param Priya Singh
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Hervé Isambert
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Sylvie Coscoy
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France.,Equipe Labellisée « Ligue contre le Cancer »
| |
Collapse
|
3
|
Singh PP, Isambert H. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates. Nucleic Acids Res 2020; 48:D724-D730. [PMID: 31612943 PMCID: PMC7145513 DOI: 10.1093/nar/gkz909] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
All vertebrates including human have evolved from an ancestor that underwent two rounds of whole genome duplication (2R-WGD). In addition, teleost fish underwent an additional third round of genome duplication (3R-WGD). The genes retained from these genome duplications, so-called ohnologs, have been instrumental in the evolution of vertebrate complexity, development and susceptibility to genetic diseases. However, the identification of vertebrate ohnologs has been challenging, due to lineage specific genome rearrangements since 2R- and 3R-WGD. We previously identified vertebrate ohnologs using a novel synteny comparison across multiple genomes. Here, we refine and apply this approach on 27 vertebrate genomes to identify ohnologs from both 2R- and 3R-WGD, while taking into account the phylogenetically biased sampling of available species. We assemble vertebrate ohnolog pairs and families in an expanded OHNOLOGS v2 database. We find that teleost fish have retained more 2R-WGD ohnologs than mammals and sauropsids, and that these 2R-ohnologs have retained significantly more ohnologs from the subsequent 3R-WGD than genes without 2R-ohnologs. Interestingly, species with fewer extant genes, such as sauropsids, have retained similar or higher proportions of ohnologs. OHNOLOGS v2 should allow deeper evolutionary genomic analysis of the impact of WGD on vertebrates and can be freely accessed at http://ohnologs.curie.fr.
Collapse
Affiliation(s)
- Param Priya Singh
- Institut Curie, Research Center, CNRS UMR168, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Hervé Isambert
- Institut Curie, Research Center, CNRS UMR168, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| |
Collapse
|
4
|
Roux J, Liu J, Robinson-Rechavi M. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates. Mol Biol Evol 2018; 34:2773-2791. [PMID: 28981708 PMCID: PMC5850798 DOI: 10.1093/molbev/msx199] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation.
Collapse
Affiliation(s)
- Julien Roux
- Département d'Ecologie et d'Evolution, Université de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jialin Liu
- Département d'Ecologie et d'Evolution, Université de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Département d'Ecologie et d'Evolution, Université de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
5
|
Learning causal networks with latent variables from multivariate information in genomic data. PLoS Comput Biol 2017; 13:e1005662. [PMID: 28968390 PMCID: PMC5685645 DOI: 10.1371/journal.pcbi.1005662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/14/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Abstract
Learning causal networks from large-scale genomic data remains challenging in absence of time series or controlled perturbation experiments. We report an information- theoretic method which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables, commonly found in many genomic datasets. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The approach and associated algorithm, miic, outperform earlier methods on a broad range of benchmark networks. Causal network reconstructions are presented at different biological size and time scales, from gene regulation in single cells to whole genome duplication in tumor development as well as long term evolution of vertebrates. Miic is publicly available at https://github.com/miicTeam/MIIC. The reconstruction of causal networks from genomic data is an important but challenging problem. Predicting key regulatory interactions or genomic alterations at the origin of human diseases can guide experimental investigation and ultimately inspire innovative therapy. However, causal relationships are difficult to establish without the possibility to directly perturb the organisms’ genome for ethical or practical reasons. Besides, unmeasured (latent) variables may be hidden in many genomic datasets and lead to spurious causal relationships between observed variables. We propose in this paper an efficient computational approach, miic, that overcomes these limitations and learns causal networks from non-perturbative (observational) data in the presence of latent variables. In addition, we assess the confidence of each predicted interaction and demonstrate the enhanced robustness and accuracy of miic compared to alternative existing methods. This approach can be applied on a wide range of datasets and provide new biological insights on regulatory networks from single cell expression data or genomic alterations during tumor development. Miic is implemented in an R package freely available to the scientific community under a General Public License.
Collapse
|
6
|
Singh PP, Arora J, Isambert H. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes. PLoS Comput Biol 2015; 11:e1004394. [PMID: 26181593 PMCID: PMC4504502 DOI: 10.1371/journal.pcbi.1004394] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
- * E-mail: (PPS); (HI)
| | - Jatin Arora
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
| | - Hervé Isambert
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
- * E-mail: (PPS); (HI)
| |
Collapse
|
7
|
Singh PP, Affeldt S, Malaguti G, Isambert H. Human dominant disease genes are enriched in paralogs originating from whole genome duplication. PLoS Comput Biol 2014; 10:e1003754. [PMID: 25080083 PMCID: PMC4117431 DOI: 10.1371/journal.pcbi.1003754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Séverine Affeldt
- CNRS-UMR168, UPMC, Institut Curie, Research Center, Paris, France
| | - Giulia Malaguti
- CNRS-UMR168, UPMC, Institut Curie, Research Center, Paris, France
| | - Hervé Isambert
- CNRS-UMR168, UPMC, Institut Curie, Research Center, Paris, France
- * E-mail:
| |
Collapse
|