1
|
Gideon DA, Nirusimhan V, Manoj KM. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn 2020; 40:1995-2009. [PMID: 33073701 DOI: 10.1080/07391102.2020.1835715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the light reaction of oxygenic photosynthesis, plastocyanin (PC) and ferredoxins (Fd) are small/diffusible redox-active proteins playing key roles in electron transfer/transport phenomena. In the Z-scheme mechanistic purview, they are considered as specific affinity binding-based electron-relay agents, linking the functions of Cytochrome b6f (Cyt. b6f), Photosystem I (PS I) and Fd:NADPH oxidoreductase (FNR). The murburn explanation for photolytic photophosphorylation deems PC/Fd as generic 'redox capacitors', temporally accepting and releasing one-electron equivalents in reaction milieu. Herein, we explore the two theories with respect to structural, distributional and functional aspects of PC/Fd. Amino acid residues located on the surface loci of key patches of PC/Fd vary in electrostatic/contour (topography) signatures. Crystal structures of four different complexes each of Cyt.f-PC and Fd-FNR show little conservation in the contact-surfaces, thereby discrediting 'affinity binding-based electron transfers (ET)' as an evolutionary logic. Further, thermodynamic and kinetic data of wildtype and mutant proteins interactions do not align with Z-scheme. Furthermore, micromolar physiological concentrations of PC and the non-conducive architecture of chloroplasts render the classical model untenable. In the murburn model, as PC is optional, the observation that plants lacking PC survive and grow is justified. Further, the low physiological concentration/distribution of PC in chloroplast lumen/stroma is supported by murburn equilibriums, as higher concentrations would limit electron transfers. Thus, structural evidence, interactive dynamics with redox partners and physiological distribution/role of PC/Fd support the murburn perspective that these proteins serve as generic redox-capacitors in chloroplasts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India
| |
Collapse
|
2
|
Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, Eicke S, Schober A, Bártulos CR, Maréchal E, Kroth PG, Petroutsos D, Zeeman S, Breyton C, Schoehn G, Falconet D, Finazzi G. Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 2017. [PMID: 28631733 PMCID: PMC5481826 DOI: 10.1038/ncomms15885] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean. Phytoplankton and plant plastids have distinct evolutionary origins and membrane organization. Here Flori et al. show that diatom photosynthetic complexes spatially segregate into interconnected subdomains within loose thylakoid stacks enabling fast diffusion of electron carriers and efficient photosynthesis
Collapse
Affiliation(s)
- Serena Flori
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| | - Pierre-Henri Jouneau
- Laboratoire d'Etudes des Matériaux par Microscopie Avancée, Institut Nanosciences et Cryogénie, Service de Physique des Matériaux et Microstructures, CEA-Grenoble, 38000 Grenoble Cédex 9, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique (IBPC), UMR 7141, CNRS and Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Benoit Gallet
- CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Leandro F Estrozi
- CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Christine Moriscot
- CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| | - Simona Eicke
- Plant Biochemistry, Department of Biology, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Alexander Schober
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Eric Maréchal
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| | - Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dimitris Petroutsos
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| | - Samuel Zeeman
- Plant Biochemistry, Department of Biology, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Cécile Breyton
- CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Guy Schoehn
- CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Denis Falconet
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble, 38000 Grenoble, France
| |
Collapse
|
3
|
Barilli E, Rubiales D, Castillejo MÁ. Comparative proteomic analysis of BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi). J Proteomics 2012; 75:5189-205. [PMID: 22800640 DOI: 10.1016/j.jprot.2012.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Systemic acquired resistance (SAR) to Uromyces pisi in pea was studied by using a proteomic approach. Two-dimensional electrophoresis (2-DE) was used in order to compare the leaf proteome of two pea genotypes displaying different phenotypes (susceptible and partial resistance to the fungus), and in response to parasite infection under the effect of two inducers of SAR, BTH and BABA. Multivariate statistical analysis identified 126 differential protein spots under the experimental conditions (genotypes/treatments). All of these 126 protein spots were subjected to MALDI-TOF/TOF mass spectrometry to deduce their possible functions. A total of 50 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the identified proteins corresponded to enzymes belonging to photosynthesis, metabolism, biosynthesis, binding and defense response, whose behavior pattern was different in relation to susceptibility/resistance of the genotypes studied and to the BTH/BABA induction to pathogen response. Results obtained in this work suggested that plants could reduce their photosynthesis and other energy metabolism and enhance the production of defense-related proteins to cope the stress. On the other side, we postulated that resistance induced by the chemicals operates via different mechanisms: BABA inducer could act via phenolic biosynthesis pathway, whereas resistance provided by BTH inducer seems to be mediated by defense and stress-related proteins. The results are discussed in terms of response to rust under the effect of inducers.
Collapse
Affiliation(s)
- Eleonora Barilli
- Institute for Sustainable Agriculture, CSIC, 4084, E-14080 Córdoba, Spain
| | | | | |
Collapse
|
4
|
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:645-55. [PMID: 22093371 DOI: 10.1016/j.tplants.2011.10.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | |
Collapse
|
5
|
Chida H, Yokoyama T, Kawai F, Nakazawa A, Akazaki H, Takayama Y, Hirano T, Suruga K, Satoh T, Yamada S, Kawachi R, Unzai S, Nishio T, Park SY, Oku T. Crystal structure of oxidized cytochromec6AfromArabidopsis thaliana. FEBS Lett 2006; 580:3763-8. [PMID: 16777100 DOI: 10.1016/j.febslet.2006.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/12/2006] [Accepted: 05/27/2006] [Indexed: 10/24/2022]
Abstract
Compared with algal and cyanobacterial cytochrome c(6), cytochrome c(6A) from higher plants contains an additional loop of 12 amino acid residues. We have determined the first crystal structure of cytochrome c(6A) from Arabidopsis thaliana at 1.5 Angstrom resolution in order to help elucidate its function. The overall structure of cytochrome c(6A) follows the topology of class I c-type cytochromes in which the heme prosthetic group covalently binds to Cys16 and Cys19, and the iron has octahedral coordination with His20 and Met60 as the axial ligands. Two cysteine residues (Cys67 and Cys73) within the characteristic 12 amino acids loop form a disulfide bond, contributing to the structural stability of cytochrome c(6A). Our model provides a chemical basis for the known low redox potential of cytochrome c(6A) which makes it an unsuitable electron carrier between cytochrome b(6)f and PSI.
Collapse
Affiliation(s)
- Hirotaka Chida
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
8
|
Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:13-22. [PMID: 16317035 DOI: 10.1093/jxb/erj023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | | | |
Collapse
|
11
|
Wastl J, Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA, Bendall DS, Howe CJ. Redox properties of Arabidopsis cytochrome c6 are independent of the loop extension specific to higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:115-20. [PMID: 15238268 DOI: 10.1016/j.bbabio.2004.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/26/2004] [Indexed: 11/22/2022]
Abstract
Cytochrome c6 (cytc6) from Arabidopsis differs from the cyanobacterial and algal homologues in several redox properties. It is possible that these differences might be due to the presence of a 12 amino acid residue loop extension common to higher plant cytc6 proteins. However, homology modelling suggests this is not the case. We report experiments to test if differences in biochemical properties could be due to this extension. Analysis of mutant forms of Arabidopsis cytc6 in which the entire extension was lacking, or a pair of cysteine residues in the extension had been exchanged for serine, revealed no significant effect of these changes on either the redox potential of the haem group or the reactivity towards Photosystem I (PSI). We conclude that the differences in properties are due to more subtle unidentified differences in structure, and that the sequence extension in the higher plant proteins has a function yet to be identified.
Collapse
Affiliation(s)
- Jürgen Wastl
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Page MLD, Hamel PP, Gabilly ST, Zegzouti H, Perea JV, Alonso JM, Ecker JR, Theg SM, Christensen SK, Merchant S. A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome bf Complex in Arabidopsis Chloroplasts. J Biol Chem 2004; 279:32474-82. [PMID: 15159384 DOI: 10.1074/jbc.m404285200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-type cytochromes are defined by the occurrence of heme covalently linked to the polypeptide via thioether bonds between heme and the cysteine sulfhydryls in the CXXCH motif of apocytochrome. Maintenance of apocytochrome sulfhydryls in a reduced state is a prerequisite for covalent ligation of heme to the CXXCH motif. In bacteria, a thiol disulfide transporter and a thioredoxin are two components in a thio-reduction pathway involved in c-type cytochrome assembly. We have identified in photosynthetic eukaryotes nucleus-encoded homologs of a prokaryotic thiol disulfide transporter, CcdA, which all display an N-terminal extension with respect to their bacterial counterparts. The extension of Arabidopsis CCDA functions as a targeting sequence, suggesting a plastid site of action for CCDA in eukaryotes. Using PhoA and LacZ as topological reporters, we established that Arabidopsis CCDA is a polytopic protein with within-membrane strictly conserved cysteine residues. Insertional mutants in the Arabidopsis CCDA gene were identified, and loss-of-function alleles were shown to impair photosynthesis because of a defect in cytochrome b(6)f accumulation, which we attribute to a block in the maturation of holocytochrome f, whose heme binding domain resides in the thylakoid lumen. We postulate that plastid cytochrome c maturation requires CCDA, thioredoxin HCF164, and other molecules in a membrane-associated trans-thylakoid thiol-reducing pathway.
Collapse
Affiliation(s)
- M L Dudley Page
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|