1
|
Zhou YR, Li Y, Yang LH, Kozlowski G, Yi LT, Liu MH, Zheng SS, Song YG. The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species. Sci Rep 2024; 14:20577. [PMID: 39232239 PMCID: PMC11375091 DOI: 10.1038/s41598-024-71838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Collapse
Affiliation(s)
- Yu-Ren Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang-Hai Yang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, 1700, Fribourg, Switzerland
- Natural History Museum Fribourg, 1700, Fribourg, Switzerland
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
2
|
Juri G, Ripa RR, Premoli AC. Plastomes of Nothofagus reflect a shared biogeographic history in Patagonia. J Hered 2024; 115:588-599. [PMID: 38869982 DOI: 10.1093/jhered/esae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Plastomes are used in phylogenetic reconstructions because of their relatively conserved nature. Nonetheless, some limitations arise, particularly at lower taxonomic levels due to reduced interspecific polymorphisms and frequent hybridization events that result in unsolved phylogenies including polytomies and reticulate evolutionary patterns. Next-generation sequencing technologies allow access to genomic data and strongly supported phylogenies, yet biased topologies may be obtained due to insufficient taxon sampling. We analyze the hypothesis that intraspecific plastome diversity reflects biogeographic history and hybridization cycles among taxa. We generated 12 new plastome sequences covering distinct latitudinal locations of all species of subgenus Nothofagus from North Patagonia. Chloroplast genomes were assembled, annotated, and searched for simple sequence repeats (SSRs). Phylogenetic reconstructions included species and sampled locations. The six Nothofagus species analyzed were of similar size and structure; only Nothofagus obliqua of subgenus Lophozonia, used as an outgroup, presented slight differences in size. We detected a variable number of SSRs in distinct species and locations. Phylogenetic analyses of plastomes confirmed that subgenus Nothofagus organizes into two monophyletic clades each consisting of individuals of different species. We detected a geographic structure within subgenus Nothofagus and found evidence of local chloroplast sharing due to past hybridization, followed by adaptive introgression and ecological divergence. These contributions enrich the comprehension of transversal evolutionary mechanisms such as chloroplast capture and its implications for phylogenetic and phylogenomic analyses.
Collapse
Affiliation(s)
- Gabriela Juri
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro - CONICET, Río Negro, Argentina
| | - Ramiro R Ripa
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| | - Andrea C Premoli
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| |
Collapse
|
3
|
Yu X, Ma Z, Liu S, Duan Z. Analysis of the Rhodomyrtus tomentosa mitochondrial genome: Insights into repeat-mediated recombination and intra-cellular DNA transfer. Gene 2024; 909:148288. [PMID: 38367854 DOI: 10.1016/j.gene.2024.148288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant mitochondrial genomes participate in encoding proteins crucial to the major producers of ATP in the cell and replication and heredity of their own DNA. The sequences and structure of the plant mitochondrial genomes profoundly impact these fundamental processes, and studies of plant mitochondrial genomes are needed. We reported the complete sequences of the Rhodomyrtus tomentosa mitochondrial genome here, totaling 400,482 bp. Nanopore ONT reads and PCR amplification provided evidence for recombination mediated by the eight repeat pairs for the R. tomentosa mitochondrial genome. Thirty-eight genes were identified in the R. tomentosa mitochondrial genome. Comparative analyses of the mitochondrial genome and plastome and PCR amplification suggest that five fragments of mitochondrial plastid DNA were unfunctional sequences resulting from intracellular gene transfer. Phylogenetic analysis based on each and all of the 27 mitochondrial protein-coding genes of nine Myrtales species revealed that R. tomentosa always clustered with other species of Myrtaceae. This study uncovered the enormous complexity of the R. tomentosa mitochondrial genome, the active repeat-mediated recombinations, the presence of mitochondrial plastid DNAs, and the topological incongruence of Myrtales among the single-gene trees.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhengbing Ma
- Forestry Technology Extension Station of Huiyang, Huizhou 516211, Guangdong, China.
| | - Shu Liu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhonggang Duan
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|
4
|
Zhang Z, Zhang DS, Zou L, Yao CY. Comparison of chloroplast genomes and phylogenomics in the Ficus sarmentosa complex (Moraceae). PLoS One 2022; 17:e0279849. [PMID: 36584179 PMCID: PMC9803296 DOI: 10.1371/journal.pone.0279849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Due to maternal inheritance and minimal rearrangement, the chloroplast genome is an important genetic resource for evolutionary studies. However, the evolutionary dynamics and phylogenetic performance of chloroplast genomes in closely related species are poorly characterized, particularly in taxonomically complex and species-rich groups. The taxonomically unresolved Ficus sarmentosa species complex (Moraceae) comprises approximately 20 taxa with unclear genetic background. In this study, we explored the evolutionary dynamics, hotspot loci, and phylogenetic performance of thirteen chloroplast genomes (including eleven newly obtained and two downloaded from NCBI) representing the F. sarmentosa complex. Their sequence lengths, IR boundaries, repeat sequences, and codon usage were compared. Both sequence length and IR boundaries were found to be highly conserved. All four categories of long repeat sequences were found across all 13 chloroplast genomes, with palindromic and forward sequences being the most common. The number of simple sequence repeat (SSR) loci varied from 175 (F. dinganensis and F. howii) to 190 (F. polynervis), with the dinucleotide motif appearing the most frequently. Relative synonymous codon usage (RSCU) analysis indicated that codons ending with A/T were prior to those ending with C/T. The majority of coding sequence regions were found to have undergone negative selection with the exception of ten genes (accD, clpP, ndhK, rbcL, rpl20, rpl22, rpl23, rpoC1, rps15, and rps4) which exhibited potential positive selective signatures. Five hypervariable genic regions (rps15, ycf1, rpoA, ndhF, and rpl22) and five hypervariable intergenic regions (trnH-GUG-psbA, rpl32-trnL-UAG, psbZ-trnG-GCC, trnK-UUU-rps16 and ndhF-rpl32) were identified. Overall, phylogenomic analysis based on 123 Ficus chloroplast genomes showed promise for studying the evolutionary relationships in Ficus, despite cyto-nuclear discordance. Furthermore, based on the phylogenetic performance of the F. sarmentosa complex and F. auriculata complex, the chloroplast genome also exhibited a promising phylogenetic resolution in closely related species.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - De-Shun Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Lu Zou
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chi-Yuan Yao
- College of Architecture and Urban Planning, Tongji University, Shanghai, China,* E-mail:
| |
Collapse
|
5
|
Luo X, Zhou H, Cao D, Yan F, Chen P, Wang J, Woeste K, Chen X, Fei Z, An H, Malvolti M, Ma K, Liu C, Ebrahimi A, Qiao C, Ye H, Li M, Lu Z, Xu J, Cao S, Zhao P. Domestication and selection footprints in Persian walnuts (Juglans regia). PLoS Genet 2022; 18:e1010513. [PMID: 36477175 PMCID: PMC9728896 DOI: 10.1371/journal.pgen.1010513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, Kaifeng, Henan, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Xi’an Botanical Garden of Shaanxi Province, Xi’an, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Xin Chen
- Shandong Institute of Pomology, National Germplasm Repository of Walnut and Chestnut, Tai’an, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, Missouri, United States of America
| | - Maria Malvolti
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano, Terni, Italy
| | - Kai Ma
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chaobin Liu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- * E-mail: (JX); (SC); (PZ)
| | - Shangying Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JX); (SC); (PZ)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- * E-mail: (JX); (SC); (PZ)
| |
Collapse
|
6
|
Novaes-e-Fagundes G, Lyra ML, Loredam VSA, Carvalho TR, Haddad CFB, Rodrigues MT, Baldo D, Barrasso DA, Loebmann D, Ávila RW, Brusquetti F, Prudente ALC, Wheeler WC, Goyannes Dill Orrico V, Peloso P. A tale of two bellies: systematics of the oval frogs (Anura: Microhylidae: Elachistocleis Parker, 1927). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Oval frogs (Elachistocleis) have a broad geographic distribution covering nearly all of South America and parts of Central America. They also have a large inter- and intraspecific variation of the few morphological characters commonly used as diagnostic traits among species of the genus. Based on molecular data, we provide the most complete phylogeny of Elachistocleis to date, and explore its genetic diversity using distance-based and tree-based methods for putative species delimitation. Our results show that at least two of the most relevant traditional characters used in the taxonomy of this group (belly pattern and dorsal median white line) carry less phylogenetic information than previously thought. Based on our results, we propose some synonymizations and some candidate new species. This study is a first major step in disentangling the current systematics of Elachistocleis. Yet, a comprehensive review of morphological data is needed before any new species descriptions can be properly made.
Collapse
Affiliation(s)
- Gabriel Novaes-e-Fagundes
- Tropical Herpetology Laboratory, PPG Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz , Ilhéus, Bahia , Brazil
| | - Mariana L Lyra
- Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista , Rio Claro, São Paulo , Brazil
| | - Vinicius S A Loredam
- Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista , Rio Claro, São Paulo , Brazil
| | - Thiago R Carvalho
- Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista , Rio Claro, São Paulo , Brazil
| | - Célio F B Haddad
- Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista , Rio Claro, São Paulo , Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical `Claudio Juan Bidau’ (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones , Posadas, Misiones , Argentina
| | - Diego A Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET) , Puerto Madryn, Chubut , Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia `San Juan Bosco’ , Puerto Madryn, Chubut , Argentina
| | - Daniel Loebmann
- Laboratório de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande , Rio Grande, Rio Grande do Sul , Brazil
| | - Robson W Ávila
- Departamento de Biologia, Núcleo Regional de Ofiologia da UFC, Universidade Federal do Ceará , Fortaleza, Ceará , Brazil
| | - Francisco Brusquetti
- Instituto de Investigación Biológica del Paraguay , Del Escudo, Asunción , Paraguay
| | - Ana L C Prudente
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi , Belém, Pará , Brazil
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History , New York, NY , USA
| | - Victor Goyannes Dill Orrico
- Tropical Herpetology Laboratory, PPG Zoologia, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz , Ilhéus, Bahia , Brazil
| | - Pedro Peloso
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi , Belém, Pará , Brazil
| |
Collapse
|
7
|
Murillo-A J, Valencia-D J, Orozco CI, Parra-O C, Neubig KM. Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification. AMERICAN JOURNAL OF BOTANY 2022; 109:1139-1156. [PMID: 35709353 DOI: 10.1002/ajb2.16025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family. METHODS We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia. RESULTS Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. CONCLUSIONS Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.
Collapse
Affiliation(s)
- José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Janice Valencia-D
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Kurt M Neubig
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| |
Collapse
|
8
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
9
|
Hodel RGJ, Zimmer EA, Liu BB, Wen J. Synthesis of Nuclear and Chloroplast Data Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid Origin of the Maleae-Gillenieae Clade. FRONTIERS IN PLANT SCIENCE 2022; 12:820997. [PMID: 35145537 PMCID: PMC8822239 DOI: 10.3389/fpls.2021.820997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Plant biologists have debated the evolutionary origin of the apple tribe (Maleae; Rosaceae) for over a century. The "wide-hybridization hypothesis" posits that the pome-bearing members of Maleae (base chromosome number x = 17) resulted from a hybridization and/or allopolyploid event between progenitors of other tribes in the subfamily Amygdaloideae with x = 8 and x = 9, respectively. An alternative "spiraeoid hypothesis" proposed that the x = 17 of Maleae arose via the genome doubling of x = 9 ancestors to x = 18, and subsequent aneuploidy resulting in x = 17. We use publicly available genomic data-448 nuclear genes and complete plastomes-from 27 species representing all major tribes within the Amygdaloideae to investigate evolutionary relationships within the subfamily containing the apple tribe. Specifically, we use network analyses and multi-labeled trees to test the competing wide-hybridization and spiraeoid hypotheses. Hybridization occurred between an ancestor of the tribe Spiraeeae (x = 9) and an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) + Kerrieae (x = 9), giving rise to the clade Gillenieae (x = 9) + Maleae (x = 17). The ancestor of the Maleae + Gillenieae arose via hybridization between distantly related tribes in the Amygdaloideae (i.e., supporting the wide hybridization hypothesis). However, some evidence supports an aspect of the spiraeoid hypothesis-the ancestors involved in the hybridization event were likely both x = 9, so genome doubling was followed by aneuploidy to result in x = 17 observed in Maleae. By synthesizing existing genomic data with novel analyses, we resolve the nearly century-old mystery regarding the origin of the apple tribe. Our results also indicate that nuclear gene tree-species tree conflict and/or cytonuclear conflict are pervasive at several other nodes in subfamily Amygdaloideae of Rosaceae.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
10
|
Shidhi PR, Biju VC, Anu S, Vipin CL, Deelip KR, Achuthsankar SN. Genome Characterization, Comparison and Phylogenetic Analysis of Complete Mitochondrial Genome of Evolvulus alsinoides Reveals Highly Rearranged Gene Order in Solanales. Life (Basel) 2021; 11:769. [PMID: 34440513 PMCID: PMC8398076 DOI: 10.3390/life11080769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A's and G's in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.
Collapse
Affiliation(s)
- Pattayampadam Ramakrishnan Shidhi
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Vadakkemukadiyil Chellappan Biju
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Sasi Anu
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Chandrasekharan Laila Vipin
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Kumar Raveendran Deelip
- Campus Computing Facility (CCF) at the Central Laboratory for Instrumentation and Facilitation, University of Kerala, Thiruvananthapuram 695581, India;
| | - Sukumaran Nair Achuthsankar
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| |
Collapse
|
11
|
Lv X, Hu J, Hu Y, Li Y, Xu D, Ryder OA, Irwin DM, Yu L. Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Mol Phylogenet Evol 2020; 157:107065. [PMID: 33387649 DOI: 10.1016/j.ympev.2020.107065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.
Collapse
Affiliation(s)
- Xue Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yiwen Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Yitian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Dongming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
12
|
Hussain I, Pervaiz N, Khan A, Saleem S, Shireen H, Wei DQ, Labrie V, Bao Y, Abbasi AA. Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity. Genes Immun 2020; 21:409-419. [PMID: 33273723 PMCID: PMC7711619 DOI: 10.1038/s41435-020-00120-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby, may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. Our findings warrant further characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their inhibitory effects on the host immune system.
Collapse
Affiliation(s)
- Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abbas Khan
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Shoaib Saleem
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Dong-Qing Wei
- State Key Lab of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, PR China. .,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, PR China. .,Peng Cheng Laboratory, Vanke Cloud City, Phase I Building 8, Xili Street, Nashan District, Guangdong, 518055, Shenzhen, PR China.
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, 100101, Beijing, PR China. .,University of Chinese Academy of Sciences, 100101, Beijing, PR China.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
13
|
Prasanna AN, Gerber D, Kijpornyongpan T, Aime MC, Doyle VP, Nagy LG. Model Choice, Missing Data, and Taxon Sampling Impact Phylogenomic Inference of Deep Basidiomycota Relationships. Syst Biol 2020; 69:17-37. [PMID: 31062852 DOI: 10.1093/sysbio/syz029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
Resolving deep divergences in the tree of life is challenging even for analyses of genome-scale phylogenetic data sets. Relationships between Basidiomycota subphyla, the rusts and allies (Pucciniomycotina), smuts and allies (Ustilaginomycotina), and mushroom-forming fungi and allies (Agaricomycotina) were found particularly recalcitrant both to traditional multigene and genome-scale phylogenetics. Here, we address basal Basidiomycota relationships using concatenated and gene tree-based analyses of various phylogenomic data sets to examine the contribution of several potential sources of bias. We evaluate the contribution of biological causes (hard polytomy, incomplete lineage sorting) versus unmodeled evolutionary processes and factors that exacerbate their effects (e.g., fast-evolving sites and long-branch taxa) to inferences of basal Basidiomycota relationships. Bayesian Markov Chain Monte Carlo and likelihood mapping analyses reject the hard polytomy with confidence. In concatenated analyses, fast-evolving sites and oversimplified models of amino acid substitution favored the grouping of smuts with mushroom-forming fungi, often leading to maximal bootstrap support in both concatenation and coalescent analyses. On the contrary, the most conserved data subsets grouped rusts and allies with mushroom-forming fungi, although this relationship proved labile, sensitive to model choice, to different data subsets and to missing data. Excluding putative long-branch taxa, genes with high proportions of missing data and/or with strong signal failed to reveal a consistent trend toward one or the other topology, suggesting that additional sources of conflict are at play. While concatenated analyses yielded strong but conflicting support, individual gene trees mostly provided poor support for any resolution of rusts, smuts, and mushroom-forming fungi, suggesting that the true Basidiomycota tree might be in a part of tree space that is difficult to access using both concatenation and gene tree-based approaches. Inference-based assessments of absolute model fit strongly reject best-fit models for the vast majority of genes, indicating a poor fit of even the most commonly used models. While this is consistent with previous assessments of site-homogenous models of amino acid evolution, this does not appear to be the sole source of confounding signal. Our analyses suggest that topologies uniting smuts with mushroom-forming fungi can arise as a result of inappropriate modeling of amino acid sites that might be prone to systematic bias. We speculate that improved models of sequence evolution could shed more light on basal splits in the Basidiomycota, which, for now, remain unresolved despite the use of whole genome data.
Collapse
Affiliation(s)
- Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary
| | - Daniel Gerber
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary.,Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest 1097, Hungary
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Laszlo G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary
| |
Collapse
|
14
|
Gao LZ, Liu YL, Zhang D, Li W, Gao J, Liu Y, Li K, Shi C, Zhao Y, Zhao YJ, Jiao JY, Mao SY, Gao CW, Eichler EE. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun Biol 2019; 2:278. [PMID: 31372517 PMCID: PMC6659635 DOI: 10.1038/s42003-019-0531-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
The course, tempo and mode of chloroplast genome evolution remain largely unknown, resulting in limited knowledge about how plant plastome gene and genome evolve during the process of recent plant speciation. Here, we report the complete plastomes of 22 closely related Oryza species in chronologically ordered stages and generate the first precise map of genomic structural variation, to our knowledge. The occurrence rapidity was estimated on average to be ~7 insertions and ~15 deletions per Myr. Relatively fewer deletions than insertions result in an increased repeat density that causes the observed growth of Oryza chloroplast genome sizes. Genome-wide scanning identified 14 positively selected genes that are relevant to photosynthesis system, eight of which were found independently in shade-tolerant or sun-loving rice species. psaA seemed positively selected in both shade-tolerant and sun-loving rice species. The results show that adaptive evolution of chloroplast genes makes rice species adapt to diverse ecological habitats related to sunlight preferences.
Collapse
Affiliation(s)
- Li-Zhi Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Yun-Long Liu
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Dan Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, 510642 Guangzhou, China
| | - Ju Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Yuan Liu
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Kui Li
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Chao Shi
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Yuan Zhao
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Faculty of Plant Protection, Yunnan Agricultural University, 650204 Kunming, China
| | - You-Jie Zhao
- Southwest China Forestry University, 650224 Kunming, China
| | - Jun-Ying Jiao
- Southwest China Forestry University, 650224 Kunming, China
| | - Shu-Yan Mao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Cheng-Wen Gao
- Plant Germplasm and Genomics Research Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
15
|
What are the roles of taxon sampling and model fit in tests of cyto-nuclear discordance using avian mitogenomic data? Mol Phylogenet Evol 2019; 130:132-142. [DOI: 10.1016/j.ympev.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022]
|
16
|
Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han KL, Harshman J, Huddleston CJ, Kingston S, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Witt CC, Yuri T, Braun EL. Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling. Syst Biol 2018; 66:857-879. [PMID: 28369655 DOI: 10.1093/sysbio/syx041] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/22/2017] [Indexed: 01/27/2023] Open
Abstract
Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves, the largest clade of extant birds, as a "model system" to understand the basis for incongruence among phylogenomic trees. We were motivated by the observation that trees from two recent avian phylogenomic studies exhibit conflicts. Those studies used different strategies: 1) collecting many characters [$\sim$ 42 mega base pairs (Mbp) of sequence data] from 48 birds, sometimes including only one taxon for each major clade; and 2) collecting fewer characters ($\sim$ 0.4 Mbp) from 198 birds, selected to subdivide long branches. However, the studies also used different data types: the taxon-poor data matrix comprised 68% non-coding sequences whereas coding exons dominated the taxon-rich data matrix. This difference raises the question of whether the primary reason for incongruence is the number of sites, the number of taxa, or the data type. To test among these alternative hypotheses we assembled a novel, large-scale data matrix comprising 90% non-coding sequences from 235 bird species. Although increased taxon sampling appeared to have a positive impact on phylogenetic analyses the most important variable was data type. Indeed, by analyzing different subsets of the taxa in our data matrix we found that increased taxon sampling actually resulted in increased congruence with the tree from the previous taxon-poor study (which had a majority of non-coding data) instead of the taxon-rich study (which largely used coding data). We suggest that the observed differences in the estimates of topology for these studies reflect data-type effects due to violations of the models used in phylogenetic analyses, some of which may be difficult to detect. If incongruence among trees estimated using phylogenomic methods largely reflects problems with model fit developing more "biologically-realistic" models is likely to be critical for efforts to reconstruct the tree of life. [Birds; coding exons; GTR model; model fit; Neoaves; non-coding DNA; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Sushma Reddy
- Biology Department, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Akanksha Pandey
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Peter A Hosner
- Department of Biology, University of Florida, Gainesville, FL 32607, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL 32607, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD 20742, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution-MRC 163, PO Box 37012, Washington, DC 20013-7012, USA
| | - Shannon J Hackett
- Zoology Department, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | | | - Christopher J Huddleston
- Collections Program, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
| | - Sarah Kingston
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD 20742, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution-MRC 163, PO Box 37012, Washington, DC 20013-7012, USA.,Bowdoin College, Department of Biology and Coastal Studies Center, 6500 College Station, Brunwick, ME 04011, USA
| | - Ben D Marks
- Zoology Department, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Kathleen J Miglia
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - William S Moore
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Christopher C Witt
- Department of Biology and Museum of Southwestern Biology, University 15 of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Tamaki Yuri
- Department of Biology, University of Florida, Gainesville, FL 32607, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32607, USA.,Genetics Institute, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
17
|
Liu F, Zhao Y, Luo D, Hong D, Li R. The complete chloroplast genome sequence of Oryza rhizomatis (Poaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:467-468. [PMID: 33473865 PMCID: PMC7799503 DOI: 10.1080/23802359.2017.1357453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The complete chloroplast genome sequence of Oryza rhizomatis (GenBank accession number: KX085497) was generated by de novo assembly with low-coverage whole-genome sequence data. The genome was 134,796 bp in length, containing a pair of inverted repeat (IRa and IRb) regions of 20,818 bp, which were separated by a large single-copy (LSC) region of 80,829 bp and a small single-copy (SSC) region of 12,330 bp, respectively. The genic regions account for 43.77% of whole cpDNA, and the AT content of the cpDNA was 60.99%. The O. rhizomatis cpDNA encodes 112 unigenes (79 protein-coding genes, four rRNA genes, and 29 tRNA genes). Eighteen genes contain introns, ycf3 contains two introns, and the rest of the gene contains one intron; rps12 is trans-spliced, one of its exons is in the LSC region (5′_end) and the two reside in the IR regions (3′_end) separated. A pair of gene ndhH, due to the 5′ part of ndhH which overlaps the IR/SSC junctions, was two unique genes. The four rRNA genes are all located in the IR. Phylogenomic analysis showed that O. rhizomatis is closely related to O. officinalis. The new data will help to determine the phylogenetic placement of the genus Oryza and fill gaps in our understanding of Oryzae biology.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College Guangxi University, Nanning, China
| | - Yan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College Guangxi University, Nanning, China
| | - Dengjie Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College Guangxi University, Nanning, China
| | - Dengwei Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College Guangxi University, Nanning, China
| |
Collapse
|
18
|
Wise MJ. dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees. PLoS One 2016; 11:e0166991. [PMID: 27898695 PMCID: PMC5127522 DOI: 10.1371/journal.pone.0166991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa.
Collapse
Affiliation(s)
- Michael J. Wise
- Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Rivera-Rivera CJ, Montoya-Burgos JI. LS³: A Method for Improving Phylogenomic Inferences When Evolutionary Rates Are Heterogeneous among Taxa. Mol Biol Evol 2016; 33:1625-34. [PMID: 26912812 PMCID: PMC4868118 DOI: 10.1093/molbev/msw043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³.
Collapse
Affiliation(s)
- Carlos J Rivera-Rivera
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Juan I Montoya-Burgos
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
20
|
The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae). Mol Phylogenet Evol 2016; 99:16-33. [DOI: 10.1016/j.ympev.2016.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
|
21
|
O'Malley MA. Histories of molecules: Reconciling the past. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2016; 55:69-83. [PMID: 26774071 DOI: 10.1016/j.shpsa.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Molecular data and methods have become centrally important to evolutionary analysis, largely because they have enabled global phylogenetic reconstructions of the relationships between organisms in the tree of life. Often, however, molecular stories conflict dramatically with morphology-based histories of lineages. The evolutionary origin of animal groups provides one such case. In other instances, different molecular analyses have so far proved irreconcilable. The ancient and major divergence of eukaryotes from prokaryotic ancestors is an example of this sort of problem. Efforts to overcome these conflicts highlight the role models play in phylogenetic reconstruction. One crucial model is the molecular clock; another is that of 'simple-to-complex' modification. I will examine animal and eukaryote evolution against a backdrop of increasing methodological sophistication in molecular phylogeny, and conclude with some reflections on the nature of historical science in the molecular era of phylogeny.
Collapse
|
22
|
Zhang J, Zhang D, Shi C, Gao J, Gao LZ. The complete chloroplast genome sequence of Chikusichloa aquatica (Poaceae: Oryzeae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2771-2. [PMID: 26190082 DOI: 10.3109/19401736.2015.1053058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete chloroplast sequence of the Chikusichloa aquatica was determined in this study. The genome consists of 136 563 bp containing a pair of inverted repeats (IRs) of 20 837 bp, which was separated by a large single-copy region and a small single-copy region of 82 315 bp and 33 411 bp, respectively. The C. aquatica cp genome encodes 111 functional genes (71 protein-coding genes, four rRNA genes, and 36 tRNA genes): 92 are unique, while 19 are duplicated in the IR regions. The genic regions account for 58.9% of whole cp genome, and the GC content of the plastome is 39.0%. A phylogenomic analysis showed that C. aquatica is closely related to Rhynchoryza subulata that belongs to the tribe Oryzeae.
Collapse
Affiliation(s)
- Jie Zhang
- a Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China .,b University of Chinese Academy of Sciences , Beijing , China , and
| | - Dan Zhang
- c Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Chao Shi
- a Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China
| | - Ju Gao
- a Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China
| | - Li-Zhi Gao
- a Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
23
|
Goremykin VV, Nikiforova SV, Cavalieri D, Pindo M, Lockhart P. The Root of Flowering Plants and Total Evidence. Syst Biol 2015; 64:879-91. [DOI: 10.1093/sysbio/syv028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
|
24
|
Winkler IS, Blaschke JD, Davis DJ, Stireman JO, O'Hara JE, Cerretti P, Moulton JK. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae). Mol Phylogenet Evol 2015; 88:38-54. [PMID: 25841383 DOI: 10.1016/j.ympev.2015.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/01/2022]
Abstract
Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems.
Collapse
Affiliation(s)
- Isaac S Winkler
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; Department of Biology, Linfield College, McMinnville, OR 97128, USA
| | - Jeremy D Blaschke
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel J Davis
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - James E O'Hara
- Canadian National Collection of Insects, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Pierfilippo Cerretti
- DAFNAE-Entomology, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy; Dipartimento di Biologia e Biotecnologie 'Charles Darwin', 'Sapienza' Università di Roma, Piazzale A. Moro 5, 00185 Rome, Italy
| | - John K Moulton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
25
|
An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 2015; 5:7949. [PMID: 25609566 PMCID: PMC4302308 DOI: 10.1038/srep07949] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/18/2014] [Indexed: 01/27/2023] Open
Abstract
Overwhelming evidence supports the endosymbiosis theory that mitochondria originated once from the Alphaproteobacteria. However, its exact position in the tree of life remains highly debated. This is because systematic errors, including biased taxonomic sampling, high evolutionary rates and sequence composition bias have long plagued the mitochondrial phylogenetics. In this study, we address this issue by 1) increasing the taxonomic representation of alphaproteobacterial genomes by sequencing 18 phylogenetically novel species. They include 5 Rickettsiales and 4 Rhodospirillales, two orders that have shown close affiliations with mitochondria previously, 2) using a set of 29 slowly evolving mitochondria-derived nuclear genes that are less biased than mitochondria-encoded genes as the alternative “well behaved” markers for phylogenetic analysis, 3) applying site heterogeneous mixture models that account for the sequence composition bias. With the integrated phylogenomic approach, we are able to for the first time place mitochondria unequivocally within the Rickettsiales order, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family. Our results suggest that mitochondria most likely originated from a Rickettsiales endosymbiont already residing in the host, but not from the distantly related free-living Pelagibacter and Rhodospirillales.
Collapse
|
26
|
Leucocytozoon pterotenuis sp. nov. (Haemosporida, Leucocytozoidae): description of the morphologically unique species from the Grallariidae birds, with remarks on the distribution of Leucocytozoon parasites in the Neotropics. Parasitol Res 2014; 114:1031-44. [DOI: 10.1007/s00436-014-4269-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
|
27
|
Gao J, Li K, Gao LZ. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:980-2. [PMID: 24938112 DOI: 10.3109/19401736.2014.926515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns.
Collapse
Affiliation(s)
- Ju Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Kui Li
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Li-zhi Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and.,b Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
28
|
Gao J, Gao LZ. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:983-5. [PMID: 24938113 DOI: 10.3109/19401736.2014.926516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns.
Collapse
Affiliation(s)
- Ju Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Li-zhi Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and.,b Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
29
|
Luo J, Hou BW, Niu ZT, Liu W, Xue QY, Ding XY. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications. PLoS One 2014; 9:e99016. [PMID: 24911363 PMCID: PMC4049609 DOI: 10.1371/journal.pone.0099016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/02/2022] Open
Abstract
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.
Collapse
Affiliation(s)
- Jing Luo
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bei-Wei Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhi-Tao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qing-Yun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Yu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Som A. Causes, consequences and solutions of phylogenetic incongruence. Brief Bioinform 2014; 16:536-48. [PMID: 24872401 DOI: 10.1093/bib/bbu015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/05/2014] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic analysis is used to recover the evolutionary history of species, genes or proteins. Understanding phylogenetic relationships between organisms is a prerequisite of almost any evolutionary study, as contemporary species all share a common history through their ancestry. Moreover, it is important because of its wide applications that include understanding genome organization, epidemiological investigations, predicting protein functions, and deciding the genes to be analyzed in comparative studies. Despite immense progress in recent years, phylogenetic reconstruction involves many challenges that create uncertainty with respect to the true evolutionary relationships of the species or genes analyzed. One of the most notable difficulties is the widespread occurrence of incongruence among methods and also among individual genes or different genomic regions. Presence of widespread incongruence inhibits successful revealing of evolutionary relationships and applications of phylogenetic analysis. In this article, I concisely review the effect of various factors that cause incongruence in molecular phylogenies, the advances in the field that resolved some factors, and explore unresolved factors that cause incongruence along with possible ways for tackling them.
Collapse
|
31
|
Li T, Hua J, Wright AM, Cui Y, Xie Q, Bu W, Hillis DM. Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC Evol Biol 2014; 14:99. [PMID: 24884699 PMCID: PMC4101842 DOI: 10.1186/1471-2148-14-99] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most previous studies of morphological and molecular data have consistently supported the monophyly of the true water bugs (Hemiptera: Nepomorpha). An exception is a recent study by Hua et al. (BMC Evol Biol 9: 134, 2009) based on nine nepomorphan mitochondrial genomes. In the analysis of Hua et al. (BMC Evol Biol 9: 134, 2009), the water bugs in the group Pleoidea formed the sister group to a clade that consisted of Nepomorpha (the remaining true water bugs) + Leptopodomorpha (shore bugs) + Cimicomorpha (assassin bugs and relatives) + Pentatomomorpha (stink bugs and relatives), thereby suggesting that fully aquatic hemipterans evolved independently at least twice. Based on these results, Hua et al. (BMC Evol Biol 9: 134, 2009) elevated the Pleoidea to a new infraorder, the Plemorpha. RESULTS Our reanalysis suggests that the lack of support for the monophyly of the true water bugs (including Pleoidea) by Hua et al. (BMC Evol Biol 9: 134, 2009) likely resulted from inadequate taxon sampling. In particular, long-branch attraction (LBA) between the distant outgroup taxa and Pleoidea, as well as LBA among taxa in the ingroup, made Nepomorpha appear to be polyphyletic. We used three complementary strategies to test and alleviate the effects of LBA: (1) the removal of distant outgroups from the analysis; (2) the addition of closely related outgroups; and (3) the addition of a mitochondrial genome from a second family of Pleoidea. We also performed likelihood-ratio tests to examine the support for monophyly of Nepomorpha with different combinations of taxa included in the analysis. Furthermore, we found that specimens of Helotrephes sp. were misidentified as Paraplea frontalis (Fieber, 1844) by Hua et al. (BMC Evol Biol 9: 134, 2009). CONCLUSIONS All analyses that included the addition of more taxa significantly and consistently supported the placement of Pleoidea within the Nepomorpha (i.e., supported the monophyly of the traditional true water bugs). Our analyses further support a close relationship between Notonectoidea and Pleoidea within Nepomorpha, and the superfamilies Nepoidea, Ochteroidea, Naucoroidea, and Pleoidea are resolved as monophyletic in all trees with strong support. Our results also confirmed that monophyly of Nepomorpha clearly is not refuted by the mitochondrial genome data.
Collapse
Affiliation(s)
- Teng Li
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jimeng Hua
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - April M Wright
- Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA
| | - Ying Cui
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qiang Xie
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - David M Hillis
- Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
32
|
Zhang LN, Zhang XZ, Zhang YX, Zeng CX, Ma PF, Zhao L, Guo ZH, Li DZ. Identification of putative orthologous genes for the phylogenetic reconstruction of temperate woody bamboos (Poaceae: Bambusoideae). Mol Ecol Resour 2014; 14:988-99. [PMID: 24606129 DOI: 10.1111/1755-0998.12248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next-generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra-individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos.
Collapse
Affiliation(s)
- Li-Na Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 2014; 9:e85761. [PMID: 24614886 PMCID: PMC3948623 DOI: 10.1371/journal.pone.0085761] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023] Open
Abstract
Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8–9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1–2.9 MYA, while rye diverged from Triticum aestivum approximately 3–4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae.
Collapse
|
34
|
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 2014; 14:23. [PMID: 24533922 PMCID: PMC3933183 DOI: 10.1186/1471-2148-14-23] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/13/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. RESULTS We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. CONCLUSIONS Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.
Collapse
Affiliation(s)
- Brad R Ruhfel
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Matthew A Gitzendanner
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
35
|
Drew BT, Ruhfel BR, Smith SA, Moore MJ, Briggs BG, Gitzendanner MA, Soltis PS, Soltis DE. Another Look at the Root of the Angiosperms Reveals a Familiar Tale. Syst Biol 2014; 63:368-82. [DOI: 10.1093/sysbio/syt108] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Li R, Ma PF, Wen J, Yi TS. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications. PLoS One 2013; 8:e78568. [PMID: 24205264 PMCID: PMC3799623 DOI: 10.1371/journal.pone.0078568] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022] Open
Abstract
Background The ginseng family (Araliaceae) includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. Methodology/Principal Findings We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333–156,459 bp in length including a pair of inverted repeats (25,551–26,108 bp) separated by the large single-copy (86,028–86,566 bp) and small single-copy (18,021–19,117 bp) regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. Conclusion The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
| | - Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
- * E-mail: (JW); (T-SY)
| | - Ting-Shuang Yi
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- * E-mail: (JW); (T-SY)
| |
Collapse
|
37
|
Wheat CW, Wahlberg N. Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends Ecol Evol 2013; 28:636-42. [PMID: 23973265 DOI: 10.1016/j.tree.2013.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022]
Abstract
Phylogenomic advances provide more rigorous estimates for the timing of evolutionary divergences than previously available (e.g., Bayesian relaxed-clock estimates with soft fossil constraints). However, because many family-level clades and higher, as well as model species within those clades, have not been included in phylogenomic studies, the literature presents temporal estimates likely harboring substantial errors. Blindly using such dates can substantially retard scientific advancement. We suggest a way forward by conducting analyses that minimize prior assumptions and use large datasets, and demonstrate how using such a phylogenomic approach can lead to significantly more parsimonious conclusions without a good fossil record. We suggest that such an approach calls for research into the biological causes of conflict between molecular and fossil signatures.
Collapse
Affiliation(s)
- Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | | |
Collapse
|
38
|
Zhao L, Zhang N, Ma PF, Liu Q, Li DZ, Guo ZH. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae. PLoS One 2013; 8:e64642. [PMID: 23734211 PMCID: PMC3667173 DOI: 10.1371/journal.pone.0064642] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ning Zhang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhen-Hua Guo
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
39
|
High-throughput discovery of chloroplast and mitochondrial DNA polymorphisms in Brassicaceae species by ORG-EcoTILLING. PLoS One 2012. [PMID: 23185237 PMCID: PMC3504036 DOI: 10.1371/journal.pone.0047284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Information on polymorphic DNA in organelle genomes is essential for evolutionary and ecological studies. However, it is challenging to perform high-throughput investigations of chloroplast and mitochondrial DNA polymorphisms. In recent years, EcoTILLING stands out as one of the most universal, low-cost, and high-throughput reverse genetic methods, and the identification of natural genetic variants can provide much information about gene function, association mapping and linkage disequilibrium analysis and species evolution. Until now, no report exists on whether this method is applicable to organelle genomes and to what extent it can be used. Methodology/Principal Findings To address this problem, we adapted the CEL I-based heteroduplex cleavage strategy used in Targeting Induced Local Lesions in Genomes (TILLING) for the discovery of nucleotide polymorphisms in organelle genomes. To assess the applicability and accuracy of this technology, designated ORG-EcoTILLING, at different taxonomic levels, we sampled two sets of taxa representing accessions from the Brassicaceae with three chloroplast genes (accD, matK and rbcL) and one mitochondrial gene (atp6). The method successfully detected nine, six and one mutation sites in the accD, matK and rbcL genes, respectively, in 96 Brassica accessions. These mutations were confirmed by DNA sequencing, with 100% accuracy at both inter- and intraspecific levels. We also detected 44 putative mutations in accD in 91 accessions from 45 species and 29 genera of seven tribes. Compared with DNA sequencing results, the false negative rate was 36%. However, 17 SNPs detected in atp6 were completely identical to the sequencing results. Conclusions/Significance These results suggest that ORG-EcoTILLING is a powerful and cost-effective alternative method for high-throughput genome-wide assessment of inter- and intraspecific chloroplast and mitochondrial DNA polymorphisms. It will play an important role in evolutionary and ecological biology studies, in identification of related genes associated with agronomic importance such as high yield and improved cytoplasmic quality, and for identifying mitochondrial point mutations responsible for diseases in humans and other animals.
Collapse
|
40
|
Wheat CW, Wahlberg N. Phylogenomic Insights into the Cambrian Explosion, the Colonization of Land and the Evolution of Flight in Arthropoda. Syst Biol 2012; 62:93-109. [DOI: 10.1093/sysbio/sys074] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christopher W. Wheat
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Niklas Wahlberg
- Department of Biosciences, PL 65, Viikinkaari 1, 00014 University of Helsinki, Finland; 2 Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden; 3 Laboratory of Genetics, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
41
|
Weisrock DW. Concordance analysis in mitogenomic phylogenetics. Mol Phylogenet Evol 2012; 65:194-202. [DOI: 10.1016/j.ympev.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
|
42
|
Roure B, Baurain D, Philippe H. Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Mol Biol Evol 2012; 30:197-214. [PMID: 22930702 DOI: 10.1093/molbev/mss208] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Progress in sequencing technology allows researchers to assemble ever-larger supermatrices for phylogenomic inference. However, current phylogenomic studies often rest on patchy data sets, with some having 80% missing (or ambiguous) data or more. Though early simulations had suggested that missing data per se do not harm phylogenetic inference when using sufficiently large data sets, Lemmon et al. (Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol. 58:130-145.) have recently cast doubt on this consensus in a study based on the introduction of parsimony-uninformative incomplete characters. In this work, we empirically reassess the issue of missing data in phylogenomics while exploring possible interactions with the model of sequence evolution. First, we note that parsimony-uninformative incomplete characters are actually informative in a probabilistic framework. A reanalysis of Lemmon's data set with this in mind gives a very different interpretation of their results and shows that some of their conclusions may be unfounded. Second, we investigate the effect of the progressive introduction of missing data in a complete supermatrix (126 genes × 39 species) capable of resolving animal relationships. These analyses demonstrate that missing data perturb phylogenetic inference slightly beyond the expected decrease in resolving power. In particular, they exacerbate systematic errors by reducing the number of species effectively available for the detection of multiple substitutions. Consequently, large sparse supermatrices are more sensitive to phylogenetic artifacts than smaller but less incomplete data sets, which argue for experimental designs aimed at collecting a modest number (~50) of highly covered genes. Our results further confirm that including incomplete yet short-branch taxa (i.e., slowly evolving species or close outgroups) can help to eschew artifacts, as predicted by simulations. Finally, it appears that selecting an adequate model of sequence evolution (e.g., the site-heterogeneous CAT model instead of the site-homogeneous WAG model) is more beneficial to phylogenetic accuracy than reducing the level of missing data.
Collapse
Affiliation(s)
- Béatrice Roure
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
43
|
Parks M, Cronn R, Liston A. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol 2012; 12:100. [PMID: 22731878 PMCID: PMC3475122 DOI: 10.1186/1471-2148-12-100] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating 'noisy' data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. RESULTS We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. CONCLUSIONS These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses.
Collapse
Affiliation(s)
- Matthew Parks
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
44
|
Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, Fay MF, Devey DS, Jørgensen T, Sytsma KJ, Pillon Y. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. AMERICAN JOURNAL OF BOTANY 2012; 99:875-889. [PMID: 22539521 DOI: 10.3732/ajb.1100468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY The Asparagales, with ca. 40% of all monocotyledons, include a host of commercially important ornamentals in families such as Orchidaceae, Alliaceae, and Iridaceae, and several important crop species in genera such as Allium, Aloe, Asparagus, Crocus, and Vanilla. Though the order is well defined, the number of recognized families, their circumscription, and relationships are somewhat controversial. METHODS Phylogenetic analyses of Asparagales were based on parsimony and maximum likelihood using nucleotide sequence variation in three plastid genes (matK, ndhF, and rbcL) and two mitochondrial genes (atp1 and cob). Branch support was assessed using both jackknife analysis implementing strict-consensus (SC) and bootstrap analysis implementing frequency-within-replicates (FWR). The contribution of edited sites in the mitochondrial genes to topology and branch support was investigated. KEY RESULTS The topologies recovered largely agree with previous results, though some clades remain poorly resolved (e.g., Ruscaceae). When the edited sites were included in the analysis, the plastid and mitochondrial genes were highly incongruent. However, when the edited sites were removed, the two partitions became congruent. CONCLUSIONS Some deeper nodes in the Asparagales tree remain poorly resolved or unresolved as do the relationships of certain monogeneric families (e.g., Aphyllanthaceae, Ixioliriaceae, Doryanthaceae), whereas support for many families increases. However, the increased support is dominated by plastid data, and the potential influence of mitochondrial and biparentially inherited single or low-copy nuclear genes should be investigated.
Collapse
Affiliation(s)
- Ole Seberg
- Botanical Garden, Natural History Museum of Denmark, Sølvgade 83, Copenhagen K, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Townsend JP, Su Z, Tekle YI. Phylogenetic Signal and Noise: Predicting the Power of a Data Set to Resolve Phylogeny. Syst Biol 2012; 61:835-49. [DOI: 10.1093/sysbio/sys036] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| | - Zhuo Su
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| | - Yonas I. Tekle
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| |
Collapse
|
46
|
McCouch SR, McNally KL, Wang W, Sackville Hamilton R. Genomics of gene banks: A case study in rice. AMERICAN JOURNAL OF BOTANY 2012; 99:407-23. [PMID: 22314574 DOI: 10.3732/ajb.1100385] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Only a small fraction of the naturally occurring genetic diversity available in the world's germplasm repositories has been explored to date, but this is expected to change with the advent of affordable, high-throughput genotyping and sequencing technology. It is now possible to examine genome-wide patterns of natural variation and link sequence polymorphisms with downstream phenotypic consequences. In this paper, we discuss how dramatic changes in the cost and efficiency of sequencing and genotyping are revolutionizing the way gene bank scientists approach the responsibilities of their job. Sequencing technology provides a set of tools that can be used to enhance the quality, efficiency, and cost-effectiveness of gene bank operations, the depth of scientific knowledge of gene bank holdings, and the level of public interest in natural variation. As a result, gene banks have the chance to take on new life. Previously seen as "warehouses" where seeds were diligently maintained, but evolutionarily frozen in time, gene banks could transform into vibrant research centers that actively investigate the genetic potential of their holdings. In this paper, we will discuss how genotyping and sequencing can be integrated into the activities of a modern gene bank to revolutionize the way scientists document the genetic identity of their accessions; track seed lots, varieties, and alleles; identify duplicates; and rationalize active collections, and how the availability of genomics data are likely to motivate innovative collaborations with the larger research and breeding communities to engage in systematic and rigorous phenotyping and multilocation evaluation of the genetic resources in gene banks around the world. The objective is to understand and eventually predict how variation at the DNA level helps determine the phenotypic potential of an individual or population. Leadership and vision are needed to coordinate the characterization of collections and to integrate genotypic and phenotypic information in ways that will illuminate the value of these resources. Genotyping of collections represents a powerful starting point that will enable gene banks to become more effective as stewards of crop biodiversity.
Collapse
Affiliation(s)
- Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NewYork 14853-1901, USA.
| | | | | | | |
Collapse
|
47
|
Ma PF, Guo ZH, Li DZ. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One 2012; 7:e30297. [PMID: 22272330 PMCID: PMC3260276 DOI: 10.1371/journal.pone.0030297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. METHODOLOGY/PRINCIPAL FINDINGS We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. CONCLUSIONS/SIGNIFICANCE Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhen-Hua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
48
|
Rothfels CJ, Larsson A, Kuo LY, Korall P, Chiou WL, Pryer KM. Overcoming Deep Roots, Fast Rates, and Short Internodes to Resolve the Ancient Rapid Radiation of Eupolypod II Ferns. Syst Biol 2012; 61:490-509. [DOI: 10.1093/sysbio/sys001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carl J. Rothfels
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Anders Larsson
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Li-Yaung Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Petra Korall
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Wen-Liang Chiou
- Botanical Garden Division, Taiwan Forestry Research Institute, 53 Nan-hai Road, Taipei 10066, Taiwan
| | - Kathleen M. Pryer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
49
|
Wu ZQ, Ge S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Mol Phylogenet Evol 2012; 62:573-8. [DOI: 10.1016/j.ympev.2011.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
|
50
|
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. Statistics and truth in phylogenomics. Mol Biol Evol 2011; 29:457-72. [PMID: 21873298 DOI: 10.1093/molbev/msr202] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phylogenomics refers to the inference of historical relationships among species using genome-scale sequence data and to the use of phylogenetic analysis to infer protein function in multigene families. With rapidly decreasing sequencing costs, phylogenomics is becoming synonymous with evolutionary analysis of genome-scale and taxonomically densely sampled data sets. In phylogenetic inference applications, this translates into very large data sets that yield evolutionary and functional inferences with extremely small variances and high statistical confidence (P value). However, reports of highly significant P values are increasing even for contrasting phylogenetic hypotheses depending on the evolutionary model and inference method used, making it difficult to establish true relationships. We argue that the assessment of the robustness of results to biological factors, that may systematically mislead (bias) the outcomes of statistical estimation, will be a key to avoiding incorrect phylogenomic inferences. In fact, there is a need for increased emphasis on the magnitude of differences (effect sizes) in addition to the P values of the statistical test of the null hypothesis. On the other hand, the amount of sequence data available will likely always remain inadequate for some phylogenomic applications, for example, those involving episodic positive selection at individual codon positions and in specific lineages. Again, a focus on effect size and biological relevance, rather than the P value, may be warranted. Here, we present a theoretical overview and discuss practical aspects of the interplay between effect sizes, bias, and P values as it relates to the statistical inference of evolutionary truth in phylogenomics.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University, Arizona, USA.
| | | | | | | | | |
Collapse
|