1
|
Kelsang GA, Ni L, Zhao Z. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim. DNA Res 2024; 31:dsae022. [PMID: 39017645 PMCID: PMC11375616 DOI: 10.1093/dnares/dsae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological, and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb 'Qinjiao'. Herein, we present its first chromosome-level genome sequence assembly and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.
Collapse
Affiliation(s)
- Gyab Ala Kelsang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Mentseekhang, Traditional Tibetan Hospital, Lhasa 850000, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Zhang T, Zhou J, Gao W, Jia Y, Wei Y, Wang G. Complex genome assembly based on long-read sequencing. Brief Bioinform 2022; 23:6657663. [PMID: 35940845 DOI: 10.1093/bib/bbac305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
High-quality genome chromosome-scale sequences provide an important basis for genomics downstream analysis, especially the construction of haplotype-resolved and complete genomes, which plays a key role in genome annotation, mutation detection, evolutionary analysis, gene function research, comparative genomics and other aspects. However, genome-wide short-read sequencing is difficult to produce a complete genome in the face of a complex genome with high duplication and multiple heterozygosity. The emergence of long-read sequencing technology has greatly improved the integrity of complex genome assembly. We review a variety of computational methods for complex genome assembly and describe in detail the theories, innovations and shortcomings of collapsed, semi-collapsed and uncollapsed assemblers based on long reads. Among the three methods, uncollapsed assembly is the most correct and complete way to represent genomes. In addition, genome assembly is closely related to haplotype reconstruction, that is uncollapsed assembly realizes haplotype reconstruction, and haplotype reconstruction promotes uncollapsed assembly. We hope that gapless, telomere-to-telomere and accurate assembly of complex genomes can be truly routinely achieved using only a simple process or a single tool in the future.
Collapse
Affiliation(s)
- Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Jie Zhou
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yuran Jia
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yanan Wei
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
3
|
Vašinek M, Běhálek M, Gajdoš P, Fillerová R, Kriegová E. Determining Optical Mapping Errors by Simulations. Bioinformatics 2021; 37:3391-3397. [PMID: 33983386 DOI: 10.1093/bioinformatics/btab259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Optical mapping is a complementary technology to traditional DNA sequencing technologies, such as next-generation sequencing (NGS). It provides genome-wide, high-resolution restriction maps from single, stained molecules of DNA. It can be used to detect large and small structural variants, copy number variations, and complex rearrangements. Optical mapping is affected by different kinds of errors in comparison with traditional DNA sequencing technologies. It is important to understand the source of these errors and how they affect the obtained data. This paper proposes a novel approach to modeling errors in the data obtained from the Bionano Genomics Inc. Saphyr system with Direct Label and Stain (DLS) chemistry. Some studies have already adressed this issue for older instruments with nicking enzymes, but we are unaware of a study that addresses this new system. RESULTS The main result is a framework for studying errors in the data obtained from the Saphyr instrument with DLS chemistry. The framework's main component is a simulation that computes how major sources of errors for this instrument (a false site, a missing site, and resolution errors) affect the distribution of fragment lengths in optical maps. The simulation is parametrized by variables describing these errors and we are using a differential evolution algorithm to evaluate parameters that best fit the data from the instrument. Results of the experiments manifest that this approach can be used to study errors in the optical mapping data analysis. AVAILABILITY Source codes supporting the presented results are available at: https://github.com/mvasinek/olgen-om-error-prediction. The data underlying this article are available on the Bionano Genomics Inc. website, at: https://bionanogenomics.com/library/datasets/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michal Vašinek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Marek Běhálek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Petr Gajdoš
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Regina Fillerová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Eva Kriegová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| |
Collapse
|
4
|
Xie Y, Zhong Y, Chang J, Kwan HS. Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Fungal Genet Biol 2020; 146:103485. [PMID: 33253902 DOI: 10.1016/j.fgb.2020.103485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
The homokaryotic Coprinopsis cinerea strain A43mut B43mut pab1-1 #326 is a widely used experimental model for developmental studies in mushroom-forming fungi. It can grow on defined artificial media and complete the whole lifecycle within two weeks. The mutations in mating type factors A and B result in the special feature of clamp formation and fruiting without mating. This feature allows investigations and manipulations with a homokaryotic genetic background. Current genome assembly of strain #326 was based on short-read sequencing data and was highly fragmented, leading to the bias in gene annotation and downstream analyses. Here, we report a chromosome-level genome assembly of strain #326. Oxford Nanopore Technology (ONT) MinION sequencing was used to get long reads. Illumina short reads was used to polish the sequences. A combined assembly yield 13 chromosomes and a mitochondrial genome as individual scaffolds. The assembly has 15,250 annotated genes with a high synteny with the C. cinerea strain Okayama-7 #130. This assembly has great improvement on contiguity and annotations. It is a suitable reference for further genomic studies, especially for the genetic, genomic and transcriptomic analyses in ONT long reads. Single nucleotide variants and structural variants in six mutagenized and cisplatin-screened mutants could be identified and validated. A 66 bp deletion in Ras GTPase-activating protein (RasGAP) was found in all mutants. To make a better use of ONT sequencing platform, we modified a high-molecular-weight genomic DNA isolation protocol based on magnetic beads for filamentous fungi. This study showed the use of MinION to construct a fungal reference genome and to perform downstream studies in an individual laboratory. An experimental workflow was proposed, from DNA isolation and whole genome sequencing, to genome assembly and variant calling. Our results provided solutions and parameters for fungal genomic analysis on MinION sequencing platform.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Yiyi Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Liu M, Sun W, Ma Z, Yu G, Li J, Wang Y, Wang X. Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics 2020; 112:4897-4911. [PMID: 32916257 DOI: 10.1016/j.ygeno.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
Abnormal environmental conditions induce polyploidization and exacerbate vulnerability to agricultural production. Polyploidization is a pivotal event for plant adaption to stress and the expansion of transcription factors. NACs play key roles in plant stress resistance and growth and development, but the adaptive mechanism of NACs during plant polyploidization remain to be explored. Here, we identified and analyzed NACs from 15 species and found that the expansion of NACs was contributed by polyploidization. The regulatory networks were systematically analyzed based on polyomics. NACs might influence plant phenotypes and were correlated with amino acids acting as nitrogen source, indicating that NACs play a vital role in plant development. More importantly, in quinoa and Arabidopsis thaliana, NACs enabled plants to resist stress by regulating flavonoid pathways, and the universality was further confirmed by the Arabidopsis population. Our study provides a cornerstone for future research into improvement of important agronomic traits by transcription factors in a changing global environment.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Wenjun Sun
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| | - Zhaotang Ma
- Sichuan Agricultural University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Chengdu, China.
| | - Guolong Yu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Jiahao Li
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Yudong Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Xu Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| |
Collapse
|
6
|
Comparative genomics reveals origin of MIR159A–MIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae. Mol Genet Genomics 2019; 294:693-714. [DOI: 10.1007/s00438-019-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
|
7
|
Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, Lawton-Rauh A, Malone JM, McElroy JS, Merotto A, Westra P, Preston C, Vila-Aiub MM, Busi R, Tranel PJ, Reinhardt C, Saski C, Beffa R, Neve P, Gaines TA. The power and potential of genomics in weed biology and management. PEST MANAGEMENT SCIENCE 2018; 74:2216-2225. [PMID: 29687580 DOI: 10.1002/ps.5048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/11/2023]
Abstract
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | | | - Kateřina Hamouzová
- Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - Amy Lawton-Rauh
- Department of Genetics and Biochemistry, 316 Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jenna M Malone
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Christopher Preston
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - Martin M Vila-Aiub
- Facultad de Agronomía, Departamento de Ecología, IFEVA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Carl Reinhardt
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher Saski
- Clemson University Genomics and Computational Biology Laboratory, Clemson University, Clemson, SC, USA
| | - Roland Beffa
- Bayer AG, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Paul Neve
- Biointeractions & Crop Protection Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Li F, Harkess A. A guide to sequence your favorite plant genomes. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1030. [PMID: 29732260 PMCID: PMC5895188 DOI: 10.1002/aps3.1030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 05/12/2023]
Abstract
With the rapid development of sequencing technology and the plummeting cost, assembling whole genomes from non-model plants will soon become routine for plant systematists and evolutionary biologists. Here we summarize and compare several of the latest genome sequencing and assembly approaches, offering a practical guide on how to approach a genome project. We also highlight certain precautions that need to be taken before investing time and money into a genome project.
Collapse
Affiliation(s)
- Fay‐Wei Li
- Boyce Thompson InstituteIthacaNew York14853USA
- Plant Biology SectionCornell UniversityIthacaNew York14853USA
| | - Alex Harkess
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| |
Collapse
|
9
|
Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH. Post genomics era for orchid research. BOTANICAL STUDIES 2017; 58:61. [PMID: 29234904 PMCID: PMC5727007 DOI: 10.1186/s40529-017-0213-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/01/2017] [Indexed: 05/05/2023]
Abstract
Among 300,000 species in angiosperms, Orchidaceae containing 30,000 species is one of the largest families. Almost every habitats on earth have orchid plants successfully colonized, and it indicates that orchids are among the plants with significant ecological and evolutionary importance. So far, four orchid genomes have been sequenced, including Phalaenopsis equestris, Dendrobium catenatum, Dendrobium officinale, and Apostaceae shengen. Here, we review the current progress and the direction of orchid research in the post genomics era. These include the orchid genome evolution, genome mapping (genome-wide association analysis, genetic map, physical map), comparative genomics (especially receptor-like kinase and terpene synthase), secondary metabolomics, and genome editing.
Collapse
Affiliation(s)
- Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Anne Dievart
- CIRAD, UMR AGAP, TA A 108/03, Avenue Agropolis, 34398 Montpellier, France
- Present Address: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Life Sciences Building, Room 3-117, Shanghai, 200240 People’s Republic of China
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Shang-Yi Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hsin Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hong-Hwa Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
10
|
Choi K. Advances towards Controlling Meiotic Recombination for Plant Breeding. Mol Cells 2017; 40:814-822. [PMID: 29179262 PMCID: PMC5712510 DOI: 10.14348/molcells.2017.0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022] Open
Abstract
Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
11
|
Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics 2017; 18:578. [PMID: 28778149 PMCID: PMC5545040 DOI: 10.1186/s12864-017-3971-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. Results Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. Conclusions Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3971-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen M Moll
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA.,Montana State University, Center for Biofilm Engineering, Bozeman, MT, 59717, USA
| | - Peng Zhou
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Thiruvarangan Ramaraj
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Diego Fajardo
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Nicholas P Devitt
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Michael J Sadowsky
- Department of Soil, Water & Climate, Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | | | - Nevin D Young
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | | | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA.
| |
Collapse
|
12
|
Kaur P, Bayer PE, Milec Z, Vrána J, Yuan Y, Appels R, Edwards D, Batley J, Nichols P, Erskine W, Doležel J. An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1034-1046. [PMID: 28111887 PMCID: PMC5506647 DOI: 10.1111/pbi.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 05/08/2023]
Abstract
Subterranean clover is an important annual forage legume, whose diploidy and inbreeding nature make it an ideal model for genomic analysis in Trifolium. We reported a draft genome assembly of the subterranean clover TSUd_r1.1. Here we evaluate genome mapping on nanochannel arrays and generation of a transcriptome atlas across tissues to advance the assembly and gene annotation. Using a BioNano-based assembly spanning 512 Mb (93% genome coverage), we validated the draft assembly, anchored unplaced contigs and resolved misassemblies. Multiple contigs (264) from the draft assembly coalesced into 97 super-scaffolds (43% of genome). Sequences longer than >1 Mb increased from 40 to 189 Mb giving 1.4-fold increase in N50 with total genome in pseudomolecules improved from 73 to 80%. The advanced assembly was re-annotated using transcriptome atlas data to contain 31 272 protein-coding genes capturing >96% of the gene content. Functional characterization and GO enrichment confirmed gene expression for response to water deprivation, flavonoid biosynthesis and embryo development ending in seed dormancy, reflecting adaptation to the harsh Mediterranean environment. Comparative analyses across Papilionoideae identified 24 893 Trifolium-specific and 6325 subterranean-clover-specific genes that could be mined further for traits such as geocarpy and grazing tolerance. Eight key traits, including persistence, improved livestock health by isoflavonoid production in addition to important agro-morphological traits, were fine-mapped on the high-density SNP linkage map anchored to the assembly. This new genomic information is crucial to identify loci governing traits allowing marker-assisted breeding, comparative mapping and identification of tissue-specific gene promoters for biotechnological improvement of forage legumes.
Collapse
Affiliation(s)
- Parwinder Kaur
- Centre for Plant Genetics and Breeding and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Zbyněk Milec
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Yuxuan Yuan
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | | | - David Edwards
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Phillip Nichols
- School of Plant Biology and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- Department of Agriculture and Food Western AustraliaSouth PerthWAAustralia
| | - William Erskine
- Centre for Plant Genetics and Breeding and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Jaroslav Doležel
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| |
Collapse
|
13
|
Yuan Y, Bayer PE, Batley J, Edwards D. Improvements in Genomic Technologies: Application to Crop Genomics. Trends Biotechnol 2017; 35:547-558. [DOI: 10.1016/j.tibtech.2017.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
|
14
|
Ruprecht C, Vaid N, Proost S, Persson S, Mutwil M. Beyond Genomics: Studying Evolution with Gene Coexpression Networks. TRENDS IN PLANT SCIENCE 2017; 22:298-307. [PMID: 28126286 DOI: 10.1016/j.tplants.2016.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 05/08/2023]
Abstract
Understanding how genomes change as organisms become more complex is a central question in evolution. Molecular evolutionary studies typically correlate the appearance of genes and gene families with the emergence of biological pathways and morphological features. While such approaches are of great importance to understand how organisms evolve, they are also limited, as functionally related genes work together in contexts of dynamic gene networks. Since functionally related genes are often transcriptionally coregulated, gene coexpression networks present a resource to study the evolution of biological pathways. In this opinion article, we discuss recent developments in this field and how coexpression analyses can be merged with existing genomic approaches to transfer functional knowledge between species to study the appearance or extension of pathways.
Collapse
Affiliation(s)
- Colin Ruprecht
- Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Neha Vaid
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne,Parkville, VIC 3010, Australia
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
15
|
Müller V, Westerlund F. Optical DNA mapping in nanofluidic devices: principles and applications. LAB ON A CHIP 2017; 17:579-590. [PMID: 28098301 DOI: 10.1039/c6lc01439a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical DNA mapping has over the last decade emerged as a very powerful tool for obtaining long range sequence information from single DNA molecules. In optical DNA mapping, intact large single DNA molecules are labeled, stretched out, and imaged using a fluorescence microscope. This means that sequence information ranging over hundreds of kilobasepairs (kbp) can be obtained in one single image. Nanochannels offer homogeneous and efficient stretching of DNA that is crucial to maximize the information that can be obtained from optical DNA maps. In this review, we highlight progress in the field of optical DNA mapping in nanochannels. We discuss the different protocols for sequence specific labeling and divide them into two main categories, enzymatic labeling and affinity-based labeling. Examples are highlighted where optical DNA mapping is used to gain information on length scales that would be inaccessible with traditional techniques. Enzymatic labeling has been commercialized and is mainly used in human genetics and assembly of complex genomes, while the affinity-based methods have primarily been applied in bacteriology, for example for rapid analysis of plasmids encoding antibiotic resistance. Next, we highlight how the design of nanofluidic channels can been altered in order to obtain the desired information and discuss how recent advances in the field make it possible to retrieve information beyond DNA sequence. In the outlook section, we discuss future directions of optical DNA mapping, such as fully integrated devices and portable microscopes.
Collapse
Affiliation(s)
- Vilhelm Müller
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|