1
|
Beyer HM, Ramírez V. Integrating bioprinting and optogenetic technologies for precision plant tissue engineering. Curr Opin Biotechnol 2024; 89:103193. [PMID: 39208621 DOI: 10.1016/j.copbio.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
2
|
Rabbani M, Salehani AA, Farnaghi M, Moshtaghi M. Plant Decellularization by Chemical and Physical Methods for Regenerative Medicine: A Review Article. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:10. [PMID: 38993202 PMCID: PMC11111131 DOI: 10.4103/jmss.jmss_20_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/07/2023] [Accepted: 12/28/2023] [Indexed: 07/13/2024]
Abstract
Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Mohsen Rabbani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Alireza A. Salehani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammadhasan Farnaghi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Moshtaghi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
McNair MC, Cocioba SC, Pietrzyk P, Rife TW. Toward an open-source 3D-printable laboratory. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11562. [PMID: 38369980 PMCID: PMC10873812 DOI: 10.1002/aps3.11562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 02/20/2024]
Abstract
Premise Low-cost, repairable lab equipment is rare within the biological sciences. By lowering the costs of entry using 3D printing and open-source hardware, our goal is to empower both amateur and professional scientists to conduct research. Methods We developed a modular system of 3D-printable designs called COBLE (Collection of Bespoke Laboratory Equipment), including novel and remixed 3D-printable lab equipment that can be inexpensively printed, assembled, and repaired for a fraction of the cost of retail equivalents. Results Here we present novel tools that utilize 3D printing to enable a wide range of scientific experiments. We include additional resources for scientists and labs that are interested in utilizing 3D printing for their research. Discussion By describing the broad potential that 3D-printed designs can have in the biological sciences, we hope to inspire others to implement and improve upon these designs, improving accessibility and enabling science for all.
Collapse
Affiliation(s)
- Mason C. McNair
- Plant and Environmental Sciences, Pee Dee Research and Education CenterClemson University2200 Pocket RoadFlorenceSouth Carolina29506USA
| | - Sebastian C. Cocioba
- Binomica Labs4301 22nd Street, Floor 3, Studio 342, Long Island CityNew York11101USA
| | - Peter Pietrzyk
- Department of Plant BiologyUniversity of Georgia120 Carlton StreetAthensGeorgia30602USA
| | - Trevor W. Rife
- Plant and Environmental Sciences, Pee Dee Research and Education CenterClemson University2200 Pocket RoadFlorenceSouth Carolina29506USA
| |
Collapse
|
4
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
5
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Van den Broeck L, Schwartz MF, Krishnamoorthy S, Tahir MA, Spurney RJ, Madison I, Melvin C, Gobble M, Nguyen T, Peters R, Hunt A, Muhammad A, Li B, Stuiver M, Horn T, Sozzani R. Establishing a reproducible approach to study cellular functions of plant cells with 3D bioprinting. SCIENCE ADVANCES 2022; 8:eabp9906. [PMID: 36240264 PMCID: PMC9565790 DOI: 10.1126/sciadv.abp9906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Capturing cell-to-cell signals in a three-dimensional (3D) environment is key to studying cellular functions. A major challenge in the current culturing methods is the lack of accurately capturing multicellular 3D environments. In this study, we established a framework for 3D bioprinting plant cells to study cell viability, cell division, and cell identity. We established long-term cell viability for bioprinted Arabidopsis and soybean cells. To analyze the generated large image datasets, we developed a high-throughput image analysis pipeline. Furthermore, we showed the cell cycle reentry of bioprinted cells for which the timing coincides with the induction of core cell cycle genes and regeneration-related genes, ultimately leading to microcallus formation. Last, the identity of bioprinted Arabidopsis root cells expressing endodermal markers was maintained for longer periods. The framework established here paves the way for a general use of 3D bioprinting for studying cellular reprogramming and cell cycle reentry toward tissue regeneration.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael F. Schwartz
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Srikumar Krishnamoorthy
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Maimouna Abderamane Tahir
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan J. Spurney
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Imani Madison
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Charles Melvin
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Mariah Gobble
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Nguyen
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Rachel Peters
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Aitch Hunt
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Atiyya Muhammad
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Baochun Li
- Innovation Center of BASF, Morrisville, NC 27560, USA
| | - Maarten Stuiver
- BASF Innovation Center, Technologiepark 101, 9052 Zwijnaarde, Belgium
| | - Timothy Horn
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
8
|
Immobilising Microalgae and Cyanobacteria as Biocomposites: New Opportunities to Intensify Algae Biotechnology and Bioprocessing. ENERGIES 2021. [DOI: 10.3390/en14092566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is a groundswell of interest in applying phototrophic microorganisms, specifically microalgae and cyanobacteria, for biotechnology and ecosystem service applications. However, there are inherent challenges associated with conventional routes to their deployment (using ponds, raceways and photobioreactors) which are synonymous with suspension cultivation techniques. Cultivation as biofilms partly ameliorates these issues; however, based on the principles of process intensification, by taking a step beyond biofilms and exploiting nature inspired artificial cell immobilisation, new opportunities become available, particularly for applications requiring extensive deployment periods (e.g., carbon capture and wastewater bioremediation). We explore the rationale for, and approaches to immobilised cultivation, in particular the application of latex-based polymer immobilisation as living biocomposites. We discuss how biocomposites can be optimised at the design stage based on mass transfer limitations. Finally, we predict that biocomposites will have a defining role in realising the deployment of metabolically engineered organisms for real world applications that may tip the balance of risk towards their environmental deployment.
Collapse
|