1
|
Wang Z, Yuan H, Yan J, Liu J. Identification, characterization, and design of plant genome sequences using deep learning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17190. [PMID: 39666835 DOI: 10.1111/tpj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Jyoti, Ritu, Gupta S, Shankar R. Comprehensive analysis of computational approaches in plant transcription factors binding regions discovery. Heliyon 2024; 10:e39140. [PMID: 39640721 PMCID: PMC11620080 DOI: 10.1016/j.heliyon.2024.e39140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription factors (TFs) are regulatory proteins which bind to a specific DNA region known as the transcription factor binding regions (TFBRs) to regulate the rate of transcription process. The identification of TFBRs has been made possible by a number of experimental and computational techniques established during the past few years. The process of TFBR identification involves peak identification in the binding data, followed by the identification of motif characteristics. Using the same binding data attempts have been made to raise computational models to identify such binding regions which could save time and resources spent for binding experiments. These computational approaches depend a lot on what way they learn and how. These existing computational approaches are skewed heavily around human TFBRs discovery, while plants have drastically different genomic setup for regulation which these approaches have grossly ignored. Here, we provide a comprehensive study of the current state of the matters in plant specific TF discovery algorithms. While doing so, we encountered several software tools' issues rendering the tools not useable to researches. We fixed them and have also provided the corrected scripts for such tools. We expect this study to serve as a guide for better understanding of software tools' approaches for plant specific TFBRs discovery and the care to be taken while applying them, especially during cross-species applications. The corrected scripts of these software tools are made available at https://github.com/SCBB-LAB/Comparative-analysis-of-plant-TFBS-software.
Collapse
Affiliation(s)
- Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Gupta S, Kesarwani V, Bhati U, Jyoti, Shankar R. PTFSpot: deep co-learning on transcription factors and their binding regions attains impeccable universality in plants. Brief Bioinform 2024; 25:bbae324. [PMID: 39013383 PMCID: PMC11250369 DOI: 10.1093/bib/bbae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models.
Collapse
Affiliation(s)
- Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Veerbhan Kesarwani
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Umesh Bhati
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
6
|
Deep learning in regulatory genomics: from identification to design. Curr Opin Biotechnol 2023; 79:102887. [PMID: 36640453 DOI: 10.1016/j.copbio.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/12/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Genomics and deep learning are a natural match since both are data-driven fields. Regulatory genomics refers to functional noncoding DNA regulating gene expression. In recent years, deep learning applications on regulatory genomics have achieved remarkable advances so-much-so that it has revolutionized the rules of the game of the computational methods in this field. Here, we review two emerging trends: (i) the modeling of very long input sequence (up to 200 kb), which requires self-matched modularization of model architecture; (ii) on the balance of model predictability and model interpretability because the latter is more able to meet biological demands. Finally, we discuss how to employ these two routes to design synthetic regulatory DNA, as a promising strategy for optimizing crop agronomic properties.
Collapse
|
7
|
Yan W, Li Z, Pian C, Wu Y. PlantBind: an attention-based multi-label neural network for predicting plant transcription factor binding sites. Brief Bioinform 2022; 23:6713513. [PMID: 36155619 DOI: 10.1093/bib/bbac425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Identification of transcription factor binding sites (TFBSs) is essential to understanding of gene regulation. Designing computational models for accurate prediction of TFBSs is crucial because it is not feasible to experimentally assay all transcription factors (TFs) in all sequenced eukaryotic genomes. Although many methods have been proposed for the identification of TFBSs in humans, methods designed for plants are comparatively underdeveloped. Here, we present PlantBind, a method for integrated prediction and interpretation of TFBSs based on DNA sequences and DNA shape profiles. Built on an attention-based multi-label deep learning framework, PlantBind not only simultaneously predicts the potential binding sites of 315 TFs, but also identifies the motifs bound by transcription factors. During the training process, this model revealed a strong similarity among TF family members with respect to target binding sequences. Trans-species prediction performance using four Zea mays TFs demonstrated the suitability of this model for transfer learning. Overall, this study provides an effective solution for identifying plant TFBSs, which will promote greater understanding of transcriptional regulatory mechanisms in plants.
Collapse
Affiliation(s)
| | - Zutan Li
- Nanjing Agricultur al University
| | - Cong Pian
- College of Sciences at Nanjing Agricultural University
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, College of Agriculture, Academy for Advanced Interdisciplinary Studies at Nanjing Agricultural University
| |
Collapse
|