1
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Sarode S, Upadhyay P, Khosa M, Mak T, Shakir A, Song S, Ullah A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int J Biol Macromol 2019; 121:1086-1100. [DOI: 10.1016/j.ijbiomac.2018.10.089] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
|
3
|
Mateos LM, Villadangos AF, Santana LK, Pereira FJ, de la Rubia AG, Gil JA, Aller AJ. Comparative mathematical modelling of a green approach for bioaccumulation of cobalt from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24215-24229. [PMID: 27646450 DOI: 10.1007/s11356-016-7596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Cobalt is an essential element, but its wide use in industry generates important environmental and biological problems. The present study explores theoretical and empirical models of a green process for cobalt {Co2+} bioaccumulation from aqueous solutions. Two Gram-positive Bacillus subtilis species, strains CECT 4522 and LMM (the latter a former laboratory isolate from wastewater samples, which was phylogenetically characterized for the present work), were selected among others as the best Co2+ accumulation systems. Mathematical models representing kinetic and steady-state conditions for discrete and large amounts of bacterial biomass were expanded. In this way, it was possible to theoretically calculate the amount of Co2+ retained on the outer cell wall layer and incorporated inside the cell at any time. Theoretical and empirical hyperbolic-type models were suitable to fit the experimental bioaccumulation data for discrete amounts of bacteria biomass. In addition, kinetic relationships between the amount of Co2+ accumulated and the time before (or after) reaching steady state were established for large amounts of bacterial biomass. Other kinetic approaches were also satisfactorily tested. The two Gram-positive bacteria assayed are promising agents for developing heavy metal removal systems from industrial waste.
Collapse
Affiliation(s)
- L M Mateos
- Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - A F Villadangos
- Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - L K Santana
- Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
- Laboratório de Armazenamento de Energia e Tratamento de Efluentes, Instituto de Química, Universidade Federal de Uberlândia-MG, Av. João Naves de Ávila, 2121, CEP 38408-100, Uberlândia, Brazil
| | - F J Pereira
- Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - A G de la Rubia
- Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - J A Gil
- Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - A J Aller
- Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain.
| |
Collapse
|
4
|
Biological substrates: Green alternatives in trace elemental preconcentration and speciation analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
|
7
|
Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history. SENSORS 2012; 12:1544-71. [PMID: 22438725 PMCID: PMC3304127 DOI: 10.3390/s120201544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/24/2012] [Accepted: 02/03/2012] [Indexed: 11/21/2022]
Abstract
Initially described in 1990, Pseudomonas fluorescens HK44 served as the first whole-cell bioreporter genetically endowed with a bioluminescent (luxCDABE) phenotype directly linked to a catabolic (naphthalene degradative) pathway. HK44 was the first genetically engineered microorganism to be released in the field to monitor bioremediation potential. Subsequent to that release, strain HK44 had been introduced into other solids (soils, sands), liquid (water, wastewater), and volatile environments. In these matrices, it has functioned as one of the best characterized chemically-responsive environmental bioreporters and as a model organism for understanding bacterial colonization and transport, cell immobilization strategies, and the kinetics of cellular bioluminescent emission. This review summarizes the characteristics of P. fluorescens HK44 and the extensive range of its applications with special focus on the monitoring of bioremediation processes and biosensing of environmental pollution.
Collapse
|
8
|
Pacheco PH, Gil RA, Cerutti SE, Smichowski P, Martinez LD. Biosorption: a new rise for elemental solid phase extraction methods. Talanta 2011; 85:2290-300. [PMID: 21962645 DOI: 10.1016/j.talanta.2011.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Biosorption is a term that usually describes the removal of heavy metals from an aqueous solution through their passive binding to a biomass. Bacteria, yeast, algae and fungi are microorganisms that have been immobilized and employed as sorbents in biosorption processes. The binding characteristics of microorganisms are attributed to functional groups on the surface providing some features to the biosorption process like selectivity, specificity and easy release. These characteristics turn the biosorption into an ideal process to be introduced in solid phase extraction systems for analytical approaches. This review encompasses the research carried out since 2000, focused on the employment of biosorption processes as an analytical tool to improve instrumental analysis. Since aminoacids and peptides as synthetic analogues of natural metallothioneins, proteins present in the cell wall of microorganisms, have been also immobilized on solid supports (controlled pore glass, carbon nanotubes, silica gel polyurethane foam, etc.) and introduced into solid phase extraction systems; a survey attending this issue will be developed as well in this review.
Collapse
Affiliation(s)
- Pablo H Pacheco
- Instituto de Química de San Luis (CCT-San Luis) - Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | | | | | | | | |
Collapse
|
9
|
Xu X, Ying Y. Microbial Biosensors for Environmental Monitoring and Food Analysis. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron 2011; 26:1788-99. [DOI: 10.1016/j.bios.2010.09.005] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
|
11
|
Singh N, Gadi R. Biological methods for speciation of heavy metals: different approaches. Crit Rev Biotechnol 2009; 29:307-12. [DOI: 10.3109/07388550903284462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|