1
|
Liu Y, He B, Liu L, Hu L, Jiang G. Fasten the analysis of metal-binding proteins with GE-ICP-MS via increasing the electrolyte concentration of the running buffer. Talanta 2024; 266:125047. [PMID: 37574606 DOI: 10.1016/j.talanta.2023.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The coupled system of column gel electrophoresis and inductively coupled plasma mass spectrometry (GE-ICP-MS) is a highly effective technique for detecting metal-binding proteins. However, it takes a long time for this method to test a single sample, which greatly limits its application. In this study, GE-ICP-MS system was optimized by adjusting the analytical conditions, including the concentration and pH of running buffer and the proportion of polyacrylamide gel. The results of the experiment showed that the migration speed of proteins in GE was enhanced by increasing the electrolyte concentration in the running buffer solution. Additionally, the ICP-MS response, which was dramatically decreased because of the change in running buffer solution, can be stabilized by adjusting pH of running buffer. Meanwhile, the optimization of polyacrylamide gel ratio allows GE-ICP-MS to maintain high resolution for proteins of similar molecular weight with increased detection speed. After increasing the concentration of running buffer by 10 times, four iodine labeled proteins were successfully separated at baseline by the GE-ICP-MS system at pH 8.0 in 40 min using a resolving gel (8%, 7 cm) and a stacking gel (4%, 1 cm), which was three times faster than the original one. Finally, the optimized method was proved by detecting a silver-binding protein in rat plasma samples. The above method provided an effective and rapid detection for metal-binding proteins in organism.
Collapse
Affiliation(s)
- Yingqiu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; School of Environment and Health, Jianghan University, Wuhan, 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Versatile analytical methodology for evaluation of drug-like properties of potentially multi-targeting anticancer metallodrugs. ANAL SCI 2022; 38:627-632. [DOI: 10.1007/s44211-022-00076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/24/2021] [Indexed: 11/01/2022]
|
3
|
Li X, Liu T, Chang C, Lei Y, Mao X. Analytical Methodologies for Agrometallomics: A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6100-6118. [PMID: 34048228 DOI: 10.1021/acs.jafc.1c00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agrometallomics, as an independent interdiscipline, is first defined and described in this review. Metallic elements widely exist in agricultural plants, animals and edible fungi, seed, fertilizer, pesticide, feedstuff, as well as the agricultural environment and ecology, and even functional and pathogenic microorganisms. So, the agrometallome plays a vital role in molecular and organismic mechanisms like environmetallomics, metabolomics, proteomics, lipidomics, glycomics, immunomics, genomics, etc. To further reveal the inner and mutual mechanism of the agrometallome, comprehensive and systematic methodologies for the analysis of beneficial and toxic metals are indispensable to investigate elemental existence, concentration, distribution, speciation, and forms in agricultural lives and media. Based on agrometallomics, this review summarizes and discusses the advanced technical progress and future perspectives of metallic analytical approaches, which are categorized into ultrasensitive and high-throughput analysis, elemental speciation and state analysis, and spatial- and microanalysis. Furthermore, the progress of agrometallomic innovativeness greatly depends on the innovative development of modern metallic analysis approaches including, but not limited to, high sensitivity, elemental coverage, and anti-interference; high-resolution isotopic analysis; solid sampling and nondestructive analysis; metal chemical species and metal forms, associated molecular clusters, and macromolecular complexes analysis; and metal-related particles or metal within the microsize and even single cell or subcellular analysis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tengpeng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chunyan Chang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yajie Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
4
|
Giringer K, Holtkamp HU, Movassaghi S, Tremlett WDJ, Lam NYS, Kubanik M, Hartinger CG. Analysis of ruthenium anticancer agents by MEEKC-UV and MEEKC-ICP-MS: Impact of structural motifs on lipophilicity and biological activity. Electrophoresis 2018; 39:1201-1207. [DOI: 10.1002/elps.201700443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Kai Giringer
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Hannah U. Holtkamp
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | | | - Nelson Y. S. Lam
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Mario Kubanik
- School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | | |
Collapse
|
5
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
6
|
Cardoso CR, Lima MVS, Cheleski J, Peterson EJ, Venâncio T, Farrell NP, Carlos RM. Luminescent ruthenium complexes for theranostic applications. J Med Chem 2014; 57:4906-15. [PMID: 24831959 DOI: 10.1021/jm5005946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The water-soluble and visible luminescent complexes cis-[Ru(L-L)2(L)2](2+) where L-L = 2,2-bipyridine and 1,10-phenanthroline and L= imidazole, 1-methylimidazole, and histamine have been synthesized and characterized by spectroscopic techniques. Spectroscopic (circular dichroism, saturation transfer difference NMR, and diffusion ordered spectroscopy NMR) and isothermal titration calorimetry studies indicate binding of cis-[Ru(phen)2(ImH)2](2+) and human serum albumin occurs via noncovalent interactions with K(b) = 9.8 × 10(4) mol(-1) L, ΔH = -11.5 ± 0.1 kcal mol(-1), and TΔS = -4.46 ± 0.3 kcal mol(-1). High uptake of the complex into HCT116 cells was detected by luminescent confocal microscopy. Cytotoxicity of cis-[Ru(phen)2(ImH)2](2+) against proliferation of HCT116p53(+/+) and HCT116p53(-/-) shows IC50 values of 0.1 and 0.7 μmol L(-1). Flow cytometry and western blot indicate RuphenImH mediates cell cycle arrest in the G1 phase in both cells and is more prominent in p53(+/+). The complex activates proapoptotic PARP in p53(-/-), but not in p53(+/+). A cytostatic mechanism based on quantification of the number of cells during the time period of incubation is suggested.
Collapse
Affiliation(s)
- Carolina R Cardoso
- Departamento de Química, Universidade Federal de São Carlos , São Carlos, São Paulo CP 676, 13565-905, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Ibrahim MM, Al-Juaid S, Mohamed MA, Yassin M. Synthesis, characterization, and antimicrobial activities of barbital-based alkaline earth metal complexes: the X-ray crystal structure of [Ba2H(Barb)5] (Barb = 5,5-diethyl barbiturate). J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.705833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohamed M. Ibrahim
- a Chemistry Department, Faculty of Science , Kafr El-Sheikh University , Kafr El-Sheikh, Egypt
- b Chemistry Department, Faculty of Science , Taif University , Taif, Saudi Arabia
| | - Salih Al-Juaid
- c Chemistry Department, Faculty of Science , King Abdulaziz University , Jeddah, Saudi Arabia
| | - Mahmoud A. Mohamed
- b Chemistry Department, Faculty of Science , Taif University , Taif, Saudi Arabia
- d Biochemistry Department, Faculty of Agriculture , Cairo University , Cairo, Egypt
| | - M.H. Yassin
- e Departement of Medical Microbiology , Faculty of Applied Medical Science, Taif University , Tarabah, Saudi Arabia
- f Departement of Reproductive Diseases , ARRI, Giza , Egypt
| |
Collapse
|
10
|
Bytzek AK, Hartinger CG. Capillary electrophoretic methods in the development of metal-based therapeutics and diagnostics: new methodology and applications. Electrophoresis 2012; 33:622-34. [PMID: 22451055 DOI: 10.1002/elps.201100402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, capillary electrophoresis (CE) has matured to a standard method in medicinal inorganic chemistry. More and more steps of the drug discovery process are followed by CE. However, not only the number of applications has steadily increased but also the variety of used methodology has significantly broadened and, as compared to a few years ago, a wider scope of separation modes and hyphenated systems has been used. Herein, a summary of the newly utilized CE methods and their applications in metallodrug research in the timeframe 2006-2011 is presented, following related reviews from 2003 and 2007 (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis 2007, 28, 3436-3446). Areas covered include impurity profiling, quality control of pharmaceutical formulations, lipophilicity estimation, interactions between metallodrugs and proteins or nucleotides, and characterization and also quantification of metabolites in biological matrices and real-world samples.
Collapse
Affiliation(s)
- Anna K Bytzek
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Timerbaev A, Pawlak K, Gabbiani C, Messori L. Recent progress in the application of analytical techniques to anticancer metallodrug proteomics. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Balcerzak M. Methods for the Determination of Platinum Group Elements in Environmental and Biological Materials: A Review. Crit Rev Anal Chem 2011. [DOI: 10.1080/10408347.2011.588922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Egger AE, Hartinger CG, Renfrew AK, Dyson PJ. Metabolization of [Ru(eta(6)-C (6)H (5)CF (3))(pta)Cl (2)]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand. J Biol Inorg Chem 2010; 15:919-27. [PMID: 20364440 DOI: 10.1007/s00775-010-0654-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/03/2010] [Indexed: 11/27/2022]
Abstract
The anticancer ruthenium-arene compound [Ru(eta(6)-C(6)H(5)CF(3))(pta)Cl(2)] (where pta is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane), termed RAPTA-CF3, with the electron-withdrawing alpha,alpha,alpha-trifluorotoluene ligand, is one of the most cytotoxic RAPTA compounds known. To rationalize the high observed cytotoxicity, the hydrolysis of RAPTA-CF3 in water and brine (100 mM sodium chloride) and its reactions with the protein ubiquitin and a double-stranded oligonucleotide (5'-GTATTGGCACGTA-3') were studied using NMR spectroscopy, high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and gel electrophoresis. The aquation of the ruthenium-chlorido complex was accompanied by a loss of the arene ligand, independent of the chloride concentration, which is a special property of the compound not observed for other ruthenium-arene complexes with relatively stable ruthenium-arene bonds. Accordingly, the mass spectra of the biomolecule reaction mixtures contained mostly [Ru(pta)]-biomolecule adducts, whereas [Ru(pta)(arene)] adducts typical of other RAPTA compounds were not observed in the protein or DNA binding studies. Gel electrophoresis experiments revealed a significant degree of decomposition of the oligonucleotide, which was more pronounced in the case of RAPTA-CF3 compared with RAPTA-C. Consequently, facile arene loss appears to be responsible for the increased cytotoxicity of RAPTA-CF3.
Collapse
Affiliation(s)
- Alexander E Egger
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
14
|
Bytzek AK, Reithofer MR, Galanski M, Groessl M, Keppler BK, Hartinger CG. The first example of MEEKC-ICP-MS coupling and its application for the analysis of anticancer platinum complexes. Electrophoresis 2010; 31:1144-1150. [PMID: 20349510 PMCID: PMC3512080 DOI: 10.1002/elps.200900522] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MEEKC is a powerful electrodriven separation technique with many applications in different disciplines, including medicinal chemistry; however, up to now the coupling to highly sensitive and selective MS detectors was limited due to the ion suppressive effect of the commonly used surfactant SDS. Herein, the first example of the coupling of MEEKC to ICP-MS is presented and an MEEKC method for the separation of Pt(II) and Pt(IV) anticancer drugs and drug candidates was developed. Different compositions of microemulsions were evaluated and the data were compared with those collected with standard ultraviolet/visible (UV/vis) spectroscopy detection. The MEEKC-ICP-MS system was found to be more sensitive than MEEKC-UV/vis and the analysis of UV/vis silent compounds is now achievable. The migration behavior of the Pt(II) and Pt(IV) compounds under investigation is correlated to their different chemical structures.
Collapse
Affiliation(s)
- Anna K. Bytzek
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Markus Galanski
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Michael Groessl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Christian G. Hartinger
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| |
Collapse
|
15
|
Tabassum S, Bhat IUH. Synthesis and characterization of glucose-bis(pyrazole)-Cu(II)/Ni(II) complexes and their in vitro DNA binding studies. Chem Pharm Bull (Tokyo) 2010; 58:318-25. [PMID: 20190435 DOI: 10.1248/cpb.58.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The D-glucose-bis pyrazolyl complexes of Cu(II) 1 and Ni(II) 2 were synthesized and characterized by elemental analysis, molar conductance measurements and spectroscopic methods. The solution structures of the complex have been assessed to square pyramidal using electronic absorption and electronic paramagnetic resonance (EPR) spectroscopy. The interaction of 1 and 2 with calf thymus DNA (CT DNA) has been carried out by absorption, emission, viscometric and electrochemical methods. The intrinsic binding constant K(b) was determined as 13.4x10(5) M(-1), 4.5x10(5) M(-1) for 1 and 2, respectively suggestive of strong binding of complexes with DNA. Furthermore, higher value of K(b) for 1 implies that this complex interacts more strongly with CT DNA in comparison to 2. The quenching constant "K" of 1 and 2 obtained from emission spectral methods was 1.33, 0.55, respectively. Complex 1 hydrolytically cleaved pBR322 supercoiled DNA in absence of an activating agent. The enhanced cleavage of pBR322 DNA was observed in presence of ascorbic acid as a reducing agent, 1 also displays efficient photonuclease activity through double strand DNA breaks when irradiated at 365 nm through mechanistic pathway involving hydroxyl radicals. In addition to the above binding studies, an in vitro binding study of complex 1 with protein human serum albumin (HSA), tyrptophan and mixtures of HSA, L-tryptophan with CT DNA was carried out. The in vitro "binding study" also supports that 1 shows higher binding affinity towards CT DNA.
Collapse
Affiliation(s)
- Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | | |
Collapse
|
16
|
Zhang Z, Feng X, Luo Q, Liu BF. Environmentally friendly surface modification of PDMS using PEG polymer brush. Electrophoresis 2009; 30:3174-80. [PMID: 19722209 DOI: 10.1002/elps.200900132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A PEG-NH2-based environmentally friendly surface modification strategy was developed for PDMS microchips to prevent protein adsorption and to enhance separation performance. PEG-NH2 was synthesized using a modified synthesis procedure. A two-step grafting method was used for PDMS modification. FTIR absorption by attenuated total reflection and contact angle measurements verified the successful grafting of PEG-NH2 onto the PDMS surface. Subsequent EOF Measurements and protein adsorption studies of PEG-modified PDMS microchips revealed noticeable EOF suppression and resistance to nonspecific protein adsorption for more than 30 days. Separation of four FITC-labeled amino acids was further demonstrated with high repeatability and reproducibility. Comparison of electrophoresis of 3-(2-furoyl)quinoline-2-carboxaldehyde-labeled BSA using PDMS microchips before and after surface modification resulted in significantly improved electrophoretic performance of the PEG-modified PDMS microchips, suggesting that our PEG grafting method successfully modified PDMS surface property and prevented adsorption of proteins. We expect that this environmentally friendly surface modification method will be useful for future protein separations with long-term surface stability.
Collapse
Affiliation(s)
- Zhaowei Zhang
- The Key Laboratory of Biomedical Photonics of MOE-Hubei Bioinformatics and Molecular Imaging Key Laboratory-Division of Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | | | | |
Collapse
|
17
|
Foteeva LS, Timerbaev AR. Application of capillary electrophoresis to the analysis of metal-containing pharmaceuticals. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809120028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Bytzek AK, Enyedy ÃA, Kiss T, Keppler BK, Hartinger CG. Biodistribution of anti-diabetic Zn(II) complexes in human serum andin vitroprotein-binding studies by means of CZEâICP-MS. Electrophoresis 2009; 30:4075-82. [DOI: 10.1002/elps.200900212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Biba F, Groessl M, Egger A, Roller A, Hartinger CG, Keppler BK. New Insights into the Chemistry of the Antineoplastic Lanthanum Complex Tris(1,10-phenanthroline)tris(thiocyanato-κN)lanthanum(III) (KP772) and Its Interaction with Biomolecules. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Groessl M, Bytzek A, Hartinger CG. The serum protein binding of pharmacologically active gallium(III) compounds assessed by hyphenated CE-MS techniques. Electrophoresis 2009; 30:2720-7. [DOI: 10.1002/elps.200800745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Pei KL, Gailer J. Probing the interaction of arsenobetaine with blood plasma constituents in vitro: an SEC-ICP-AES study. Metallomics 2009; 1:403-8. [DOI: 10.1039/b903681d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Sun X, Tsang CN, Sun H. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 2009; 1:25-31. [DOI: 10.1039/b813121j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Abramski JK, Foteeva LS, Pawlak K, Timerbaev AR, Jarosz M. A versatile approach for assaying in vitro metallodrug metabolism using CE hyphenated with ICP-MS. Analyst 2009; 134:1999-2002. [DOI: 10.1039/b913954k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK. KP1019, a new redox-active anticancer agent--preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 2008; 5:2140-2155. [PMID: 18972504 DOI: 10.1002/cbdv.200890195] [Citation(s) in RCA: 667] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The promising drug candidate indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) is the second Ru-based anticancer agent to enter clinical trials. In this review, which is an update of a paper from 2006 (Hartinger et al., J. Inorg. Biochem. 2006, 100, 891-904), the experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction. The results of the early clinical development of KP1019 are summarized in which five out of six evaluated patients experienced disease stabilization with no severe side effects.
Collapse
Affiliation(s)
- Christian G Hartinger
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090 Vienna.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Groessl M, Hartinger CG, Połeć-Pawlak K, Jarosz M, Dyson PJ, Keppler BK. Elucidation of the interactions of an anticancer ruthenium complex in clinical trials with biomolecules utilizing capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry. Short communication. Chem Biodivers 2008; 5:1609-1614. [PMID: 18729095 DOI: 10.1002/cbdv.200890148] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The application of capillary electrophoresis (CE) combined with highly sensitive inductively-coupled-plasma mass spectrometric (ICP-MS) detection allows the interactions of metal complexes with biomolecules to be characterized. This technique has been used to provide new insights into the mode of action of the ruthenium-based anticancer drug candidate indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019). While the compound binds rapidly and efficiently to serum proteins, especially albumin, its reactivity towards the model DNA compound 2'-deoxyguanosine 5'-monophosphate (5'-dGMP) is moderate.
Collapse
Affiliation(s)
- Michael Groessl
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090 Vienna
| | | | | | | | | | | |
Collapse
|
27
|
Berger I, Hanif M, Nazarov AA, Hartinger CG, John RO, Kuznetsov ML, Groessl M, Schmitt F, Zava O, Biba F, Arion VB, Galanski M, Jakupec MA, Juillerat-Jeanneret L, Dyson PJ, Keppler BK. In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chemistry 2008; 14:9046-9057. [PMID: 18688905 DOI: 10.1002/chem.200801032] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and in vitro anticancer activity of dihalogenido(eta6-p-cymene)(3,5,6-bicyclophosphite-alpha-D-glucofuranoside)ruthenium(II) complexes are described. The compounds were characterized by NMR spectroscopy and ESI mass spectrometry, and the molecular structures of dichlorido-, dibromido- and diiodido(eta6-p-cymene)(3,5,6-bicyclophosphite-1,2-O-isopropylidene-alpha-D-glucofuranoside)ruthenium(II) were determined by X-ray diffraction analysis. The complexes were shown to undergo aquation of the first halido ligand in aqueous solution, followed by hydrolysis of a P--O bond of the phosphite ligand, and finally formation of dinuclear species. The hydrolysis mechanism was confirmed by DFT calculations. The aquation of the complexes was markedly suppressed in 100 mM NaCl solution, and notably only very slow hydrolysis of the P--O bond was observed. The complexes showed affinity towards albumin and transferrin and monoadduct formation with 9-ethylguanine. In vitro studies revealed that the 3,5,6-bicyclophosphite-1,2-O-cyclohexylidene-alpha-D-glucofuranoside complex is the most cytotoxic compound in human cancer cell lines (IC50 values from 30 to 300 microM depending on the cell line).
Collapse
Affiliation(s)
- Isabella Berger
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Y, Liu JM, Xia YL, Jiang Y, Yan XP. CE with on-line detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione. Electrophoresis 2008; 29:4568-74. [DOI: 10.1002/elps.200800309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Shmykov AY, Filippov VN, Foteeva LS, Keppler BK, Timerbaev AR. Toward high-throughput monitoring of metallodrug–protein interaction using capillary electrophoresis in chemically modified capillaries. Anal Biochem 2008; 379:216-8. [DOI: 10.1016/j.ab.2008.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/20/2008] [Accepted: 04/25/2008] [Indexed: 11/16/2022]
|
30
|
Brüchert W, Krüger R, Tholey A, Montes-Bayón M, Bettmer J. A novel approach for analysis of oligonucleotide-cisplatin interactions by continuous elution gel electrophoresis coupled to isotope dilution inductively coupled plasma mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 2008; 29:1451-9. [PMID: 18386302 DOI: 10.1002/elps.200700519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work we present a novel approach for in vitro studies of cisplatin interactions with 8-mer oligonucleotides. The approach is based on the recently developed coupling of continuous elution gel electrophoresis (GE) to an inductively coupled plasma-sector field mass spectrometer (ICP-SFMS) with the aim of monitoring the interaction process between this cytostatic drug and the nucleotides. In contrast to existing methods, the electrophoretic separation conditions used here allow both the determination of the reaction kinetics in more detail as well as the observation of dominant intermediates. Two different nucleotides sequences have been investigated for comparison purposes, one containing two adjacent guanines (5'-TCCGGTCC-3') and one with a combination of thymine and guanine (5'-TCCTGTCC-3'), respectively. In order to gain further structural information, MALDI-TOF MS measurements have been performed after fraction collection. This allows for identification of the intermediates and the final products and confirms the stepwise coordination of cisplatin via monoadduct to bisadduct formation. Furthermore, the ICP-MS results were quantitatively evaluated in order to calculate the kinetics of the entire process.
Collapse
Affiliation(s)
- Wolfram Brüchert
- Institute of Inorganic Chemistry and Analytical Chemistry, University of Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
31
|
Berger I, Nazarov AA, Hartinger CG, Groessl M, Valiahdi SM, Jakupec MA, Keppler BK. A glucose derivative as natural alternative to the cyclohexane-1,2-diamine ligand in the anticancer drug oxaliplatin? ChemMedChem 2008; 2:505-14. [PMID: 17340670 DOI: 10.1002/cmdc.200600279] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Having oxaliplatin as archetype, several platinum complexes with a carbohydrate moiety resembling the cyclohexane-1,2-diamine ligand of oxaliplatin have been prepared. As leaving groups, the anionic ligands iodide, oxalate, and malonate were utilized, and for comparison purposes the chloro complex was employed. All compounds were characterized by elemental analysis, nuclear magnetic resonance spectroscopy, and electrospray mass spectrometry. The crystal structure of (SP-4-3)-diiodo(2,3-diamino-2,3-dideoxy-D-glucose-kappa(2)N,N')platinum(II) was determined by X-ray diffraction. The affinity toward dGMP was assayed by capillary electrophoresis, revealing that the chloro complex shows the highest reactivity, followed by the iodo complex. In contrast, the binding kinetics of the dicarboxylato complexes are slower, with the malonato complex being the least reactive. Reactivity to dGMP in the cell-free system correlates with cytotoxicity in two of four human cancer cell lines as determined by means of the MTT assay. In three of the four cell lines, the chloro and the malonato complex are the most and the least active of the carbohydrate-Pt complexes, respectively, with IC(50) values differing only by factors of up to 3.2. Cytotoxicity of the chloro complex is one to two orders of magnitude lower than that of oxaliplatin, but still comparable to that of carboplatin in two of the four cell lines.
Collapse
Affiliation(s)
- Isabella Berger
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
32
|
Yin XB, Li Y, Yan XP. CE-ICP-MS for studying interactions between metals and biomolecules. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Application of capillary electrophoresis–inductively coupled plasma mass spectrometry to comparative studying of the reactivity of antitumor ruthenium(III) complexes differing in the nature of counter-ion toward human serum proteins. J Chromatogr A 2008; 1192:323-6. [DOI: 10.1016/j.chroma.2008.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/29/2008] [Accepted: 04/04/2008] [Indexed: 11/20/2022]
|
34
|
Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Keppler BK. Capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry: A novel approach for the analysis of anticancer metallodrugs in human serum and plasma. Electrophoresis 2008; 29:2224-32. [DOI: 10.1002/elps.200780790] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Li Y, Yin XB, Yan XP. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal–biomolecule interactions. Anal Chim Acta 2008; 615:105-14. [DOI: 10.1016/j.aca.2008.03.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/22/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
36
|
Morales R, López-Sánchez JF, Rubio R. Selenium speciation by capillary electrophoresis. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2007.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Groessl M, Hartinger CG, Dyson PJ, Keppler BK. CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. J Inorg Biochem 2007; 102:1060-5. [PMID: 18222004 DOI: 10.1016/j.jinorgbio.2007.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/10/2007] [Accepted: 11/29/2007] [Indexed: 01/16/2023]
Abstract
Elucidating the mode of action and thereby opening the way to the design of chemotherapeutic agents is one of the major goals of metal-based anticancer research. Hydrolysis and DNA binding play an important role for pharmaceutical formulation and for exerting anticancer activity. Herein, for the first time the application of capillary zone electrophoresis-inductively-coupled plasma mass spectrometry (CZE-ICP-MS) for studying the hydrolytic stability and the binding of the ruthenium anticancer drug candidates KP418, KP1019, and RAPTA-C to dGMP is described. RAPTA-C was found to hydrolyze fastest and showed the highest reactivity toward the DNA model compound, whereas KP418 was the most stable compound in both these respects.
Collapse
Affiliation(s)
- Michael Groessl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Street 42, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Timerbaev AR. Recent trends in CE of inorganic ions: From individual to multiple elemental species analysis. Electrophoresis 2007; 28:3420-35. [PMID: 17768723 DOI: 10.1002/elps.200600491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The major methodological developments in CE related to inorganic analysis are overviewed. This is an update to a previous review article by the author (Timerbaev, A. R., Electrophoresis 2004, 25, 4008-4031) and it covers the review work and innovative research papers published between January 2004 and the first part of 2006. As was underlined in that review, a growing interest of analytical community in providing elemental speciation information found a sound response of the CE method developers. Presently, almost every second research paper in the field of interest deals with element species analysis, the use of inductively coupled plasma MS detection and biochemical applications being the topics of utmost research efforts. On the other hand, advances in general methodology traditionally centered on a CE system modernization for improvements in sensitivity and separation selectivity have attracted less attention over the review period. While there is no indication that inorganic ion applications would surpass by the developmental rate the more matured analysis of organic analytes, CE can now be seen as an analytical technique to be before long customary in a number of inorganic analysis arenas.
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
39
|
Groessl M, Reisner E, Hartinger CG, Eichinger R, Semenova O, Timerbaev AR, Jakupec MA, Arion VB, Keppler BK. Structure−Activity Relationships for NAMI-A-type Complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = Imidazole, Indazole, 1,2,4-Triazole, 4-Amino-1,2,4-triazole, and 1-Methyl-1,2,4-triazole): Aquation, Redox Properties, Protein Binding, and Antiproliferative Activity. J Med Chem 2007; 50:2185-93. [PMID: 17402720 DOI: 10.1021/jm061081y] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)] (NAMI-A) and indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) are the most promising ruthenium complexes for anticancer chemotherapy. In this study, the azole ligand of NAMI-A was systematically varied (from imidazole of NAMI-A to indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole), and the respective complexes were evaluated with regard to the rate of aquation and protein binding, redox potentials, and cytotoxicity by means of capillary zone electrophoresis, electrospray ionization mass spectrometry, cyclic voltammetry, and colorimetric microculture assays. Stability studies demonstrated low stability of the complexes at pH 7.4 and 37 degrees C and a high reactivity toward proteins (binding rate constants in the ranges of 0.02-0.34 and 0.01-0.26 min-1 for albumin and transferrin, respectively). The redox potentials (between 0.25 and 0.35 V) were found to be biologically accessible for activation of the complexes in the tumor, and the indazole-containing compound shows the highest antiproliferative activity in vitro.
Collapse
Affiliation(s)
- Michael Groessl
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Timerbaev AR, Vasylenko OO, Foteeva LS, Rudnev AV, Semenova O, Keppler BK. Application of micellar and microemulsion electrokinetic chromatography for characterization of gallium(III) complexes of pharmaceutical significance. J Sep Sci 2007; 30:399-406. [PMID: 17396599 DOI: 10.1002/jssc.200600305] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CE with conventional UV detection has recently been shown as a highly effective means to assaying cytotoxic gallium(III)-based compounds with regard to desirable drug-like properties such as the stability and binding to serum proteins. In this extension of that work, different CE techniques are used to further characterize a given set of gallium coordination compounds with established antiproliferating efficacy. Using free-zone CE mode, the electrophoretic profiles of complexes are recorded in order to assess their actual charge state under physiological buffer conditions. Micellar and microemulsion electrokinetic chromatographic techniques are tested as tools for the rapid estimation of the n-octanol-water partition coefficient (log P) that provides a rationale estimate of a drug's ability to cross biological membranes. A range of electrolyte buffer systems with varying (both in the nature and concentration) organic modifiers are examined to evaluate their effect on the relationship between experimental or calculated log P and the retention factors of compounds (log k'). Both methods were found to be better applicable for neutral than for cationic Ga complexes, the microemulsion mode demonstrating superior lipophilicity estimations as well as statistically meaningful log P versus log k' correlations when all the complexes were included in one regression set.
Collapse
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|